Dirac Half-Semimetallicity and Antiferromagnetism in Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions

被引:8
作者
Tepliakov, Nikita V. [1 ,2 ,3 ]
Ma, Ruize [1 ,2 ,3 ,4 ]
Lischner, Johannes [1 ,2 ,3 ]
Kaxiras, Efthimios [5 ,6 ]
Mostofi, Arash A. [1 ,2 ,3 ]
Pizzochero, Michele [6 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[3] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[4] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
瑞士国家科学基金会;
关键词
half-semimetallicity; antiferromagnetism; spintronics; graphene nanoribbons; NANORIBBONS; METALLICITY; STATE;
D O I
10.1021/acs.nanolett.3c01940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Half-metals have been envisioned as active componentsin spintronicdevices by virtue of their completely spin-polarized electrical currents.Actual materials hosting half-metallic phases, however, remain scarce.Here, we predict that recently fabricated heterojunctions of zigzagnanoribbons embedded in two-dimensional hexagonal boron nitride arehalf-semimetallic, featuring fully spin-polarized Dirac points atthe Fermi level. The half-semimetallicity originates from the transferof charges from hexagonal boron nitride to the embedded graphene nanoribbon.These charges give rise to opposite energy shifts of the states residingat the two edges, while preserving their intrinsic antiferromagneticexchange coupling. Upon doping, an antiferromagnetic-to-ferrimagneticphase transition occurs in these heterojunctions, with the sign ofthe excess charge controlling the spatial localization of the netmagnetic moments. Our findings demonstrate that such heterojunctionsrealize tunable one-dimensional conducting channels of spin-polarizedDirac fermions seamlessly integrated into a two-dimensional insulator,thus holding promise for the development of carbon-based spintronics.
引用
收藏
页码:6698 / 6704
页数:7
相关论文
共 68 条
[61]   Quantum Dots in Graphene Nanoribbons [J].
Wang, Shiyong ;
Kharche, Neerav ;
Girao, Eduardo Costa ;
Feng, Xinliang ;
Muellen, Klaus ;
Meunier, Vincent ;
Fasel, Roman ;
Ruffieux, Pascal .
NANO LETTERS, 2017, 17 (07) :4277-4283
[62]   A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications [J].
Yano, Yuuta ;
Mitoma, Nobuhiko ;
Ito, Hideto ;
Itami, Kenichiro .
JOURNAL OF ORGANIC CHEMISTRY, 2020, 85 (01) :4-33
[63]   Magnetic correlations at graphene edges: Basis for novel spintronics devices [J].
Yazyev, Oleg V. ;
Katsnelson, M. I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[64]   A Guide to the Design of Electronic Properties of Graphene Nanoribbons [J].
Yazyev, Oleg V. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (10) :2319-2328
[65]   Emergence of magnetism in graphene materials and nanostructures [J].
Yazyev, Oleg V. .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (05)
[66]   Enhanced half-metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions [J].
Zeng, Jiang ;
Chen, Wei ;
Cui, Ping ;
Zhang, Dong-Bo ;
Zhang, Zhenyu .
PHYSICAL REVIEW B, 2016, 94 (23)
[67]   Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons [J].
Zhang, Dong-Bo ;
Wei, Su-Huai .
NPJ COMPUTATIONAL MATERIALS, 2017, 3
[68]   Ferrimagnets for spintronic devices: From materials to applications [J].
Zhang, Yue ;
Feng, Xueqiang ;
Zheng, Zhenyi ;
Zhang, Zhizhong ;
Lin, Kelian ;
Sun, Xiaohan ;
Wang, Guanda ;
Wang, Jinkai ;
Wei, Jiaqi ;
Vallobra, Pierre ;
He, Yu ;
Wang, Zixi ;
Chen, Lei ;
Zhang, Kun ;
Xu, Yong ;
Zhao, Weisheng .
APPLIED PHYSICS REVIEWS, 2023, 10 (01)