Dirac Half-Semimetallicity and Antiferromagnetism in Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions

被引:7
作者
Tepliakov, Nikita V. [1 ,2 ,3 ]
Ma, Ruize [1 ,2 ,3 ,4 ]
Lischner, Johannes [1 ,2 ,3 ]
Kaxiras, Efthimios [5 ,6 ]
Mostofi, Arash A. [1 ,2 ,3 ]
Pizzochero, Michele [6 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[3] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[4] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
瑞士国家科学基金会;
关键词
half-semimetallicity; antiferromagnetism; spintronics; graphene nanoribbons; NANORIBBONS; METALLICITY; STATE;
D O I
10.1021/acs.nanolett.3c01940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Half-metals have been envisioned as active componentsin spintronicdevices by virtue of their completely spin-polarized electrical currents.Actual materials hosting half-metallic phases, however, remain scarce.Here, we predict that recently fabricated heterojunctions of zigzagnanoribbons embedded in two-dimensional hexagonal boron nitride arehalf-semimetallic, featuring fully spin-polarized Dirac points atthe Fermi level. The half-semimetallicity originates from the transferof charges from hexagonal boron nitride to the embedded graphene nanoribbon.These charges give rise to opposite energy shifts of the states residingat the two edges, while preserving their intrinsic antiferromagneticexchange coupling. Upon doping, an antiferromagnetic-to-ferrimagneticphase transition occurs in these heterojunctions, with the sign ofthe excess charge controlling the spatial localization of the netmagnetic moments. Our findings demonstrate that such heterojunctionsrealize tunable one-dimensional conducting channels of spin-polarizedDirac fermions seamlessly integrated into a two-dimensional insulator,thus holding promise for the development of carbon-based spintronics.
引用
收藏
页码:6698 / 6704
页数:7
相关论文
共 68 条
  • [1] Structure-Imposed Electronic Topology in Cove-Edged Graphene Nanoribbons
    Arnold, Florian M.
    Liu, Tsai-Jung
    Kuc, Agnieszka
    Heine, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (21)
  • [2] Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization
    Barin, Gabriela Bonin
    Fairbrother, Andrew
    Rotach, Lukas
    Bayle, Maxime
    Paillet, Matthieu
    Liang, Liangbo
    Meunier, Vincent
    Hauert, Roland
    Dumslaff, Tim
    Narita, Akimitsu
    Muellen, Klaus
    Sahabudeen, Hafeesudeen
    Berger, Reinhard
    Feng, Xinliang
    Fasel, Roman
    Ruffieux, Pascal
    [J]. ACS APPLIED NANO MATERIALS, 2019, 2 (04): : 2184 - 2192
  • [3] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    [J]. NATURE, 2014, 506 (7488) : 349 - 354
  • [4] Bottom-up graphene nanoribbon field-effect transistors
    Bennett, Patrick B.
    Pedramrazi, Zahra
    Madani, Ali
    Chen, Yen-Chia
    de Oteyza, Dimas G.
    Chen, Chen
    Fischer, Felix R.
    Crommie, Michael F.
    Bokor, Jeffrey
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (25)
  • [5] Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
    Blackwell, Raymond E.
    Zhao, Fangzhou
    Brooks, Erin
    Zhu, Junmian
    Piskun, Ilya
    Wang, Shenkai
    Delgado, Aidan
    Lee, Yea-Lee
    Louie, Steven G.
    Fischer, Felix R.
    [J]. NATURE, 2021, 600 (7890) : 647 - +
  • [6] Cai JM, 2014, NAT NANOTECHNOL, V9, P896, DOI [10.1038/NNANO.2014.184, 10.1038/nnano.2014.184]
  • [7] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473
  • [8] Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains
    Cao, Ting
    Zhao, Fangzhou
    Louie, Steven G.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (07)
  • [9] Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions
    Cernevics, Kristians
    Yazyev, Oleg, V
    Pizzochero, Michele
    [J]. PHYSICAL REVIEW B, 2020, 102 (20)
  • [10] Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
    Chen, Lingxiu
    He, Li
    Wang, Hui Shan
    Wang, Haomin
    Tang, Shujie
    Cong, Chunxiao
    Xie, Hong
    Li, Lei
    Xia, Hui
    Li, Tianxin
    Wu, Tianru
    Zhang, Daoli
    Deng, Lianwen
    Yu, Ting
    Xie, Xiaoming
    Jiang, Mianheng
    [J]. NATURE COMMUNICATIONS, 2017, 8