Thermodynamic Analysis and Experimental Optimization for the Purification of Ni-Co-Mn Mixed Sulfate Solution from the Recovery Process of Lithium-Ion Batteries

被引:0
|
作者
Zhou, Yuan [1 ]
Yang, Jian [2 ]
Zhang, Peisen [1 ]
Liu, Zhidong [1 ,3 ]
Zhang, Zongliang [1 ,4 ]
Jia, Ming [1 ,5 ]
Liu, Fangyang [1 ,4 ]
Jiang, Liangxing [1 ,4 ]
机构
[1] Cent South Univ, Inst Light Met Ind & Electrochem, Sch Met & Environm, Changsha 410083, Peoples R China
[2] GEM New Mat Co, Jingmen 448000, Peoples R China
[3] Sichuan Changhong Gerun Environm Protect Technol C, Chengdu 610404, Peoples R China
[4] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
[5] Zizhu Technol Co Ltd, Yiyang 413046, Peoples R China
关键词
Ni-Co-Mn enriched residue; purification; thermodynamic diagrams; Ni0 5Co0 2Mn0 3(OH)(2) regeneration; Li-ion battery recycling; REMOVAL; ALUMINUM; COPPER; IRON; CU; PRECIPITATION; SEPARATION; GOETHITE; NICKEL; LI;
D O I
10.3390/cryst13060858
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Based on the principles of mass conservation, chemical equilibrium, and electron charge neutrality, a thermodynamic equilibrium system was established for the nickel-cobalt-manganese sulfate leaching solution in the recovery process of spent lithium-ion batteries. By changing the ion concentration in the system, calculating the pH value, and identifying the complexes of Cu2+, Fe3+, PO43-, Al3+, and F- in the system, the results were obtained and used to draw the thermodynamic diagram. The solution thermodynamic calculation and experiment were combined to purify the nickel-cobalt-manganese-rich leachate. The results show that the main Cu2+, Fe3+, PO43-, Al3+, and F- impurity ions could all be reduced to less than 10 ppm under the optimized process parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach
    Wang, Meng-Meng
    Zhang, Cong-Cong
    Zhang, Fu-Shen
    WASTE MANAGEMENT, 2016, 51 : 239 - 244
  • [22] Cobalt recovery and microspherical cobalt tetroxide preparation from ammonia leaching solution of spent lithium-ion batteries
    Yu, Jian-cheng
    Ma, Bao-zhong
    Shao, Shuang
    Wang, Cheng-yan
    Chen, Yong-qiang
    Zhang, Wen-juan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (09) : 3136 - 3148
  • [23] Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects
    Golmohammadzadeh, Rabeeh
    Rashchi, Fereshteh
    Vahidi, Ehsan
    WASTE MANAGEMENT, 2017, 64 : 244 - 254
  • [24] A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid
    Xu, Meiling
    Kang, Shumei
    Jiang, Feng
    Yan, Xinyong
    Zhu, Zhongbo
    Zhao, Qingping
    Teng, Yingxue
    Wang, Yu
    RSC ADVANCES, 2021, 11 (44) : 27689 - 27700
  • [25] Recovery of valuable metals from the hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries
    Tran, Thanh Tuan
    Moon, Hyun Seung
    Lee, Man Seung
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2022, 97 (05) : 1247 - 1258
  • [26] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yu Yueshan
    Wang Dahui
    Chen Huaijing
    Zhang Xiaodong
    Xu Li
    Yang Lixin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (05) : 908 - 914
  • [27] An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries
    Chen, Xiangping
    Fan, Bailin
    Xu, Liping
    Zhou, Tao
    Kong, Jiangrong
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 3562 - 3570
  • [28] A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries
    Chen, Xiangping
    Li, Jiazhu
    Kang, Duozhi
    Zhou, Tao
    Ma, Hongrui
    GREEN CHEMISTRY, 2019, 21 (23) : 6342 - 6352
  • [29] Recovery of Cobalt as Cobalt Sulfate from Discarded Lithium-Ion Batteries (LIBs) of Mobile Phones
    Choubey, Pankaj Kumar
    Kumari, Archana
    Jha, Manis Kumar
    Pathak, Devendra Deo
    RARE METAL TECHNOLOGY 2021, 2021, : 47 - 53
  • [30] Recovery of High-Purity Lithium Compounds from the Dust of the Smelting Reduction Process for Spent Lithium-Ion Batteries
    Tran, Thanh Tuan
    Son, Seong Ho
    Lee, Man Seung
    KOREAN JOURNAL OF METALS AND MATERIALS, 2022, 60 (04): : 291 - 300