Solving Fractional Differential Equations via Fixed Points of Chatterjea Maps

被引:5
作者
Hussain, Nawab [1 ]
Alsulami, Saud M. [1 ]
Alamri, Hind [1 ,2 ]
机构
[1] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Taif Univ, Coll Sci, Dept Math, POB 11099, Taif 21944, Saudi Arabia
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2023年 / 135卷 / 03期
关键词
Common fixed points; Reich and Chatterjea mappings; Krasnoselskii-Ishikawa iteration; complete metric space; Banach space; integral equation; nonlinear fractional differential equation; THEOREMS; SPACES;
D O I
10.32604/cmes.2023.023143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces. Furthermore, we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated with P-lambda and consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations. We also establish certain interesting examples to illustrate the usability of our results.
引用
收藏
页码:2617 / 2648
页数:32
相关论文
共 35 条
  • [1] Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme
    Abbas, Mujahid
    Asghar, Muhammad Waseem
    De la Sen, Manuel
    [J]. MATHEMATICS, 2022, 10 (02)
  • [2] Equivalence of Certain Iteration Processes Obtained by Two New Classes of Operators
    Abbas, Mujahid
    Anjum, Rizwan
    Berinde, Vasile
    [J]. MATHEMATICS, 2021, 9 (18)
  • [3] New Fuzzy Fixed Point Results in Generalized Fuzzy Metric Spaces With Application to Integral Equations
    Ashraf, Muhammad Sohail
    Ali, Rashid
    Hussain, Nawab
    [J]. IEEE ACCESS, 2020, 8 : 91653 - 91660
  • [4] Iterating Fixed Point via Generalized Mann's Iteration in Convex b-Metric Spaces with Application
    Asif, A.
    Alansari, M.
    Hussain, N.
    Arshad, M.
    Ali, A.
    [J]. COMPLEXITY, 2021, 2021
  • [5] Banach S., 1922, Fundam. Math, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
  • [6] Fixed point theorems for enriched Ciric-Reich-Rus contractions in Banach spaces and convex metric spaces
    Berinde, Vasile
    Pacurar, Madalina
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 173 - 184
  • [7] Fixed Points Theorems for Unsaturated and Saturated Classes of Contractive Mappings in Banach Spaces
    Berinde, Vasile
    Pacurar, Madalina
    [J]. SYMMETRY-BASEL, 2021, 13 (04):
  • [8] A note on the fixed point theorem of Gornicki
    Bisht, Ravindra K.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [9] SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES
    BROWDER, FE
    PETRYSHYN, WV
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) : 571 - +
  • [10] Ciric L. B., 1971, MATH BALKANICA, V1, P52