Data-driven modeling of beam loss in the LHC

被引:1
作者
Krymova, Ekaterina [1 ,2 ]
Obozinski, Guillaume [1 ,2 ]
Schenk, Michael [3 ]
Coyle, Loic [3 ,4 ]
Pieloni, Tatiana [3 ]
机构
[1] EPFL, Swiss Data Sci Ctr, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Ecole Polytech Fed Lausanne, Inst Phys, Particle Accelerator Phys Lab, Lausanne, Switzerland
[4] CERN, Geneva, Switzerland
关键词
beam losses; accelerator control; predictive model; ARMAX; Kalman filter; STATE-SPACE;
D O I
10.3389/fphy.2022.960963
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Large Hadron Collider, the beam losses are continuously measured for machine protection. By design, most of the particle losses occur in the collimation system, where the particles with high oscilla-tion amplitudes or large momentum error are scraped from the beams. The particle loss level is typically optimized manually by changing control parameters, among which are currents in the focusing and defocusing magnets. It is generally challenging to model and predict losses based only on the control parameters, due to the presence of various (non-linear) effects in the system, such as electron clouds, resonance effects, etc., and multiple sources of uncertainty. At the same time understanding the influence of control parameters on the losses is extremely important in order to improve the operation and performance, and future design of accelerators. Prior work [1] showed that modeling the losses as an instantaneous function of the control parameters does not generalize well to data from a different year, which is an indication that the leveraged statistical associations are not capturing the actual mechanisms which should be invariant from 1 year to the next. Given that this is most likely due to lagged effects, we propose to model the losses as a function of not only instantaneous but also previously observed control parameters as well as previous loss values. Using a standard reparameterization, we reformulate the model as a Kalman Filter (KF) which allows for a flexible and efficient estimation procedure. We consider two main variants: one with a scalar loss output, and a second one with a 4D output with loss, horizontal and vertical emittances, and aggregated heatload as components. The two models once learned can be run for a number of steps in the future, and the second model can forecast the evolution of quantities that are relevant to predicting the loss itself. Our results show that the proposed models trained on the beam loss data from 2017 are able to predict the losses on a time horizon of several minutes for the data of 2018 as well and successfully identify both local and global trends in the losses.
引用
收藏
页数:16
相关论文
共 27 条
[1]   HE-LHC: The High-Energy Large Hadron Collider Future Circular Collider Conceptual Design Report Volume 4 [J].
Abada, A. ;
Abbrescia, M. ;
AbdusSalam, S. S. ;
Abdyukhanov, I. ;
Abelleira Fernandez, J. ;
Abramov, A. ;
Aburaia, M. ;
Acar, A. O. ;
Adzic, P. R. ;
Agrawal, P. ;
Aguilar-Saavedra, J. A. ;
Aguilera-Verdugo, J. J. ;
Aiba, M. ;
Aichinger, I. ;
Aielli, G. ;
Akay, A. ;
Akhundov, A. ;
Aksakal, H. ;
Albacete, J. L. ;
Albergo, S. ;
Alekou, A. ;
Aleksa, M. ;
Aleksan, R. ;
Alemany Fernandez, R. M. ;
Alexahin, Y. ;
Alia, R. G. ;
Alioli, S. ;
Alipour Tehrani, N. ;
Allanach, B. C. ;
Allport, P. P. ;
Altinli, M. ;
Altmannshofer, W. ;
Ambrosio, G. ;
Amorim, D. ;
Amstutz, O. ;
Anderlini, L. ;
Andreazza, A. ;
Andreini, M. ;
Andriatis, A. ;
Andris, C. ;
Andronic, A. ;
Angelucci, M. ;
Antinori, F. ;
Antipov, S. A. ;
Antonelli, M. ;
Antonello, M. ;
Antonioli, P. ;
Antusch, S. ;
Anulli, F. ;
Apolinario, L. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (05) :1109-1382
[2]   FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 [J].
Abada, A. ;
Abbrescia, M. ;
AbdusSalam, S. S. ;
Abdyukhanov, I. ;
Abelleira Fernandez, J. ;
Abramov, A. ;
Aburaia, M. ;
Acar, A. O. ;
Adzic, P. R. ;
Agrawal, P. ;
Aguilar-Saavedra, J. A. ;
Aguilera-Verdugo, J. J. ;
Aiba, M. ;
Aichinger, I. ;
Aielli, G. ;
Akay, A. ;
Akhundov, A. ;
Aksakal, H. ;
Albacete, J. L. ;
Albergo, S. ;
Alekou, A. ;
Aleksa, M. ;
Aleksan, R. ;
Alemany Fernandez, R. M. ;
Alexahin, Y. ;
Alia, R. G. ;
Alioli, S. ;
Alipour Tehrani, N. ;
Allanach, B. C. ;
Allport, P. P. ;
Altinli, M. ;
Altmannshofer, W. ;
Ambrosio, G. ;
Amorim, D. ;
Amstutz, O. ;
Anderlini, L. ;
Andreazza, A. ;
Andreini, M. ;
Andriatis, A. ;
Andris, C. ;
Andronic, A. ;
Angelucci, M. ;
Antinori, F. ;
Antipov, S. A. ;
Antonelli, M. ;
Antonello, M. ;
Antonioli, P. ;
Antusch, S. ;
Anulli, F. ;
Apolinario, L. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (04) :755-1107
[3]  
Abernethy J, 2009, J MACH LEARN RES, V10, P803
[4]   Tune variations in the Large Hadron Collider [J].
Aquilina, N. ;
Giovannozzi, M. ;
Lamont, M. ;
Sammut, N. ;
Steinhagen, R. ;
Todesco, E. ;
Wenninger, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 778 :6-13
[5]   Machine learning for beam dynamics studies at the CERN Large Hadron Collider [J].
Arpaia, P. ;
Azzopardi, G. ;
Blanc, F. ;
Bregliozzi, G. ;
Buffat, X. ;
Coyle, L. ;
Fol, E. ;
Giordano, F. ;
Giovannozzi, M. ;
Pieloni, T. ;
Prevete, R. ;
Redaelli, S. ;
Salvachua, B. ;
Salvant, B. ;
Schenk, M. ;
Camillocci, M. Solfaroli ;
Tomas, R. ;
Valentino, G. ;
Van der Veken, F. F. ;
Wenninger, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 985
[6]   Bayesian TVP-VARX models with time invariant long-run multipliers [J].
Belomestny, Denis ;
Krymova, Ekaterina ;
Polbin, Andrey .
ECONOMIC MODELLING, 2021, 101
[7]   The large hadron collider [J].
Bruening, O. ;
Burkhardt, H. ;
Myers, S. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2012, 67 (03) :705-734
[8]   From general state-space to VARMAX models [J].
Casals, J. ;
Garcia-Hiernaux, A. ;
Jerez, M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (05) :924-936
[9]   A fast and stable method to compute the likelihood of time invariant state-space models [J].
Casals, J ;
Sotoca, S ;
Jerez, M .
ECONOMICS LETTERS, 1999, 65 (03) :329-337
[10]  
Coyle L., 2021, PROC 12 INT PARTICLE, P4318, DOI [10.18429/JACoW-IPAC2021-THPAB260, DOI 10.18429/JACOW-IPAC2021-THPAB260]