Enhanced dandelion phytoremediation of Cd-contaminated soil assisted by tea saponin and plant growth-promoting rhizobacteria

被引:6
|
作者
Yu, Jie [1 ,2 ]
Xie, Ruolan [1 ,2 ]
Yu, Jiang [1 ,2 ]
He, Huan [1 ,2 ]
Deng, Siwei [1 ,2 ]
Ding, Senxu [1 ,2 ]
Sun, Xiaoshuang [1 ,2 ]
Hllah, Hameed [1 ,2 ]
机构
[1] Sichuan Univ, Coll Architecture & Environm, Dept Environm Sci & Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Inst New Energy & Low Carbon Technol, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China
关键词
Phytoremediation; Plant growth-promoting rhizobacteria; Tea saponin; Cd-contaminated soil; Dandelion; HEAVY-METALS; REMEDIATION STRATEGIES; CADMIUM; BIOREMEDIATION; PHYTOEXTRACTION; BIOSURFACTANT; EXTRACTION; BACTERIA; ACCUMULATION; SURFACTANTS;
D O I
10.1007/s11368-022-03415-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose Phytoremediation is a cost-effective and environment-friendly method to remove heavy metals from soils, but there is a bottleneck with the low solubility and bioavailability of metals. To overcome this barrier, tea saponin (Ts) and plant growth-promoting rhizobacteria (PGPR) were used to enhance the extraction efficiency of hyperaccumulator dandelion from Cd-contaminated soils.Material and methods Cd-tolerant PGPR were isolated and inoculated in soils cultivated with dandelion, while Ts was spiked at optimal dosage to assess the potential of dandelion-PGPR-Ts combined remediation of Cd-contaminated soils. The controlled experiment was divided into five treatments, including CK (soil), D (dandelion + soil), TD (Ts + dandelion + soil), PD (PGPR + dandelion + soil), and PTD (PGPR + Ts + dandelion + soil) treatments. Plant growth and physiological properties, and Cd accumulation were determined. The speciation of soil Cd were extracted by BCR. Additionally, rhizosphere soil physicochemical properties and enzyme activities were measured, and a high-throughput sequencing technique was used to analyze microbial community structure.Results and discussion The results showed that the combination of Ts and PGPR significantly increased the seed germination rate and biomass of dandelion by improving nutrient supply, soil enzyme activities, and plant antioxidant enzyme activities, with 425.74% and 430.01% increase in shoot and root biomass, respectively. The PGPR and Ts increased dandelion's phytoextraction of Cd up to 11.3-fold, and the effect of Ts on the activation dynamics of Cd speciation was observed with a 10.94% increase in the weak acid soluble fraction and a 21.98% decrease in the residual fraction of Cd. Moreover, the PGPR inoculation significantly increased the abundance of Actinobacteria and Gemmatimonadota that were considered to be metal-resistant bacteria.Conclusion Planting dandelion with the application of Ts and PGPR not only increased the biomass of dandelion by improving rhizosphere soil nutrition and microecology but also promoted the mobility and bioavailability of Cd, which enhanced the extraction efficiency of hyperaccumulators. These results reveal a cutting-edge application of phytoremediation assisted by biosurfactants and microbes for Cd-contaminated soil.
引用
收藏
页码:1745 / 1759
页数:15
相关论文
共 50 条
  • [21] Impact of aeration on plant growth-promoting rhizobacteria assisted phytoremediation capability of arsenic in artificial wetland system
    Rahman, Md Ekhlasur
    Mahmud, Khairil
    Uddin, Md Kamal
    Shamsuzzaman, S. M.
    Abd Shukor, Mohd Yunus
    Abd Ghani, Siti Salwa
    Akter, Amaily
    Nabayi, Abba
    Sadeq, Buraq Musa
    Chompa, Sayma Serine
    Bin Halmi, Mohd Izuan Effendi
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2025,
  • [22] Plant growth-promoting rhizobacteria effect on maize growth and microbial biomass in a chromium-contaminated soil
    Silva, Raquel Sobral
    Lopes Antunes, Jadson Emanuel
    de Aquino, Joao Pedro Alves
    de Sousa, Ricardo Silva
    de Melo, Wanderley Jose
    Ferreira Araujo, Ademir Sergio
    BRAGANTIA, 2021, 80
  • [23] Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals
    Koo, So-Yeon
    Hong, Sun Hwa
    Ryu, Hee Wook
    Cho, Kyung-suk
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 20 (03) : 587 - 593
  • [24] Enzyme activities and effect of plant growth-promoting rhizobacteria on growth in mountain tea
    Esin, Dadasoglu
    Aykut, Oztekin
    Fatih, Dadasoglu
    Ramazan, Cakmakci
    Recep, Kotan
    Veysel, Comakli
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2017, 22 (03): : 12538 - 12545
  • [25] ENHANCED PLANT-GROWTH BY SIDEROPHORES PRODUCED BY PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    SCHROTH, MN
    LEONG, J
    TEINTZE, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 147 - BIOL
  • [26] ENHANCED PLANT-GROWTH BY SIDEROPHORES PRODUCED BY PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    LEONG, J
    TEINTZE, M
    SCHROTH, MN
    PHYTOPATHOLOGY, 1981, 71 (02) : 231 - 231
  • [27] ENHANCED PLANT-GROWTH BY SIDEROPHORES PRODUCED BY PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    LEONG, J
    TEINTZE, M
    SCHROTH, MN
    NATURE, 1980, 286 (5776) : 885 - 886
  • [28] Bioremediation of Cadmium-Contaminated Soil through Cultivation of Maize Inoculated with Plant Growth-Promoting Rhizobacteria
    Malekzadeh, E.
    Alikhani, H. A.
    Savaghebi-Firoozabadi, G. R.
    Zarei, M.
    BIOREMEDIATION JOURNAL, 2012, 16 (04) : 204 - 211
  • [29] Isolation of ACC Deaminase-containing Plant Growth-promoting Rhizobacteria from petroleum contaminated soil
    Guo, Changhong
    Fang, Fang
    Liu, Jiali
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING (ICEESD2011), PTS 1-5, 2012, 356-360 : 244 - 247
  • [30] Effects of Plant Growth–Promoting Rhizobacteria (PGPR) on the Phytoremediation of Pyrene-Nickel-Contaminated Soil by Juncus effusus
    Mingjing Gao
    Bingjie Gao
    Xinying Zhang
    Jiayue Fan
    Xiaoyan Liu
    Chuanhua Wang
    Water, Air, & Soil Pollution, 2022, 233