Decision space partition based surrogate-assisted evolutionary algorithm for expensive optimization

被引:25
作者
Liu, Yuanchao
Liu, Jianchang [1 ]
Tan, Shubin
机构
[1] Northeastern Univ, State Key Lab Synthet Automation Proc Ind, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Decision space partition; Model adaptive selection; Surrogate-assisted evolutionary algorithm; Two-stage search; Expensive optimization; MULTIOBJECTIVE OPTIMIZATION; GLOBAL OPTIMIZATION; MODEL; APPROXIMATION; FRAMEWORK; DECOMPOSITION; REGRESSION; DESIGN;
D O I
10.1016/j.eswa.2022.119075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In expensive optimization, function evaluations are based on expensive physical experiments or time consuming simulations. Moreover, the gradient for the objective is not readily available. Therefore, it is a challenge task to deal with expensive optimization. In this work, a decision space partition based surrogate-assisted evolutionary algorithm (DSP-SAEA) is proposed for expensive optimization. In DSP-SAEA, a two-stage search strategy is introduced, where the global search and the local search are seamlessly integrated. In the global search stage, a decision space partition based global search strategy is proposed. In this strategy, all the exactly evaluated points are clustered into a set of clusters. Thus, the decision space can be partitioned into several regions based on the formed clusters. Furthermore, in each region, the surrogate model is constructed. The algorithm will search for these regions simultaneously with the help of the built surrogate models. As a result, several promising points distributed in different regions are able to be obtained. In the local search stage, a model adaptive selection strategy and the trust region local search are integrated. The model adaptive selection strategy is introduced to accurately assist the trust region local search, where the local elite surrogate model is adaptively chosen from the local surrogate model pool. Experimental results on benchmark problems and the parameter estimation for frequency-modulated sound waves problem demonstrate that DSP-SAEA performs competitively compared with some state-of-the-art algorithms.
引用
收藏
页数:20
相关论文
共 61 条
[1]   A trust-region framework for managing the use of approximation models in optimization [J].
Alexandrov, NM ;
Dennis, JE ;
Lewis, RM ;
Torczon, V .
STRUCTURAL OPTIMIZATION, 1998, 15 (01) :16-23
[2]   Multi-Objective Optimization With Multiple Spatially Distributed Surrogates [J].
Bhattacharjee, Kalyan Shankar ;
Singh, Hemant Kumar ;
Ray, Tapabrata .
JOURNAL OF MECHANICAL DESIGN, 2016, 138 (09)
[3]   Accelerating evolutionary algorithms with Gaussian process fitness function models [J].
Büche, D ;
Schraudolph, NN ;
Koumoutsakos, P .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2005, 35 (02) :183-194
[4]   Efficient Generalized Surrogate-Assisted Evolutionary Algorithm for High-Dimensional Expensive Problems [J].
Cai, Xiwen ;
Gao, Liang ;
Li, Xinyu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) :365-379
[5]   An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems [J].
Cai, Xiwen ;
Qiu, Haobo ;
Gao, Liang ;
Jiang, Chen ;
Shao, Xinyu .
KNOWLEDGE-BASED SYSTEMS, 2019, 184
[6]   Surrogate-guided differential evolution algorithm for high dimensional expensive problems [J].
Cai, Xiwen ;
Gao, Liang ;
Li, Xinyu ;
Qiu, Haobo .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 :288-311
[7]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[8]   A Competitive Swarm Optimizer for Large Scale Optimization [J].
Cheng, Ran ;
Jin, Yaochu .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (02) :191-204
[9]  
Cho JY, 2010, CMES-COMP MODEL ENG, V66, P187
[10]   A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization [J].
Chugh, Tinkle ;
Jin, Yaochu ;
Miettinen, Kaisa ;
Hakanen, Jussi ;
Sindhya, Karthik .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (01) :129-142