Customizable, wireless and implantable neural probe design and fabrication via 3D printing

被引:20
|
作者
Parker, Kyle E. [1 ,2 ,3 ,4 ]
Lee, Juhyun [5 ]
Kim, Jenny R. [1 ,2 ,3 ,4 ]
Kawakami, Chinatsu [6 ]
Kim, Choong Yeon [5 ]
Qazi, Raza [5 ]
Jang, Kyung-In [7 ]
Jeong, Jae-Woong [5 ,8 ]
McCall, Jordan G. [1 ,2 ,3 ,4 ]
机构
[1] Washington Univ, Dept Anesthesiol, St Louis, MO 63130 USA
[2] Univ Hlth Sci & Pharm, Dept Pharmaceut & Adm Sci, St Louis, MO 63110 USA
[3] Univ Hlth Sci & Pharm, Ctr Clin Pharmacol, St Louis, MO 63110 USA
[4] Washington Univ, Pain Ctr, St Louis, MO 63130 USA
[5] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon, South Korea
[6] Toyohashi Univ Technol, Dept Elect & Elect Informat Engn, Toyohashi, Aichi, Japan
[7] Daegu Gyeongbuk Inst Sci & Technol, Dept Robot Engn, Daegu, South Korea
[8] Korea Atom Energy Res Inst, KAIST Inst Hlth Sci & Technol, Daejeon, South Korea
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
OPTOGENETICS; 10; YEARS; SOCIAL-ISOLATION; BRAIN; LIGHT; OPTOELECTRONICS; PHARMACOLOGY; SENSITIVITY; COMMUTATOR; CIRCUITS; DYNAMICS;
D O I
10.1038/s41596-022-00758-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires similar to 2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.
引用
收藏
页码:3 / +
页数:25
相关论文
共 50 条
  • [1] Customizable, wireless and implantable neural probe design and fabrication via 3D printing
    Kyle E. Parker
    Juhyun Lee
    Jenny R. Kim
    Chinatsu Kawakami
    Choong Yeon Kim
    Raza Qazi
    Kyung-In Jang
    Jae-Woong Jeong
    Jordan G. McCall
    Nature Protocols, 2023, 18 : 3 - 21
  • [2] Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications
    Loh, Jia Min
    Lim, Yun Jie Larissa
    Tay, Jin Ting
    Cheng, Hui Mei
    Tey, Hong Liang
    Liang, Kun
    BIOACTIVE MATERIALS, 2024, 32 : 222 - 241
  • [3] 3D Printing Enables Customizable Batteries
    Shi, Huifa
    Cao, Jiakai
    Sun, Zhenhua
    Ghazi, Zahid Ali
    Zhu, Xiaoyang
    Han, Sa
    Ren, Danyang
    Lu, Guixia
    Lan, Hongbo
    Li, Feng
    BATTERIES & SUPERCAPS, 2023, 6 (07)
  • [4] Design and fabrication of antennas using 3D printing
    Bjorgaard J.
    Hoyack M.
    Huber E.
    Mirzaee M.
    Chang Y.-H.
    Noghanian S.
    Progress In Electromagnetics Research C, 2018, 84 : 119 - 134
  • [5] Assembly of 3D Probe Array for Wireless Implantable Neuroprobe Microsystem
    Yu Aibin
    Cheng Ming-Yuan
    Tan Kwanling
    Yu Daquan
    Giao, Teh Poh
    Murthy, Ramana B.
    Minkyu, Je
    2010 12TH ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2010, : 721 - 725
  • [6] 3D Printing of Customizable Transient Bioelectronics and Sensors
    Fumeaux, Nicolas
    Briand, Danick
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (10):
  • [7] Customizable drug tablets with constant release profiles via 3D printing technology
    Tan, Yan Jie Neriah
    Yong, Wai Pong
    Low, Han Rou
    Kochhar, Jaspreet Singh
    Khanolkar, Jayant
    Lim, Teng Shuen Ernest
    Sun, Yajuan
    Wong, Jonathan Zhi En
    Soh, Siowling
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 598
  • [8] 3D printing facades: Design, fabrication, and assessment methods
    Leschok, Matthias
    Cheibas, Ina
    Piccioni, Valeria
    Seshadri, Bharath
    Schluter, Arno
    Gramazio, Fabio
    Kohler, Matthias
    Dillenburger, Benjamin
    AUTOMATION IN CONSTRUCTION, 2023, 152
  • [9] 3D Printing in the Design and Fabrication of Anthropomorphic Hands: A Review
    Park, Jonghoo
    Chang, Munhyeok
    Jung, Inchul
    Lee, Haemin
    Cho, Kyujin
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (05)
  • [10] Design and Fabrication of Industrial Components Using 3D Printing
    Sathish, T.
    Vijayakumar, M. D.
    Ayyangar, Anshumaan Krishnan
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (06) : 14489 - 14498