AN UPPER BOUND FOR THE FIRST POSITIVE EIGENVALUE OF THE KOHN LAPLACIAN ON REINHARDT REAL HYPERSURFACES

被引:1
|
作者
Dall'Ara, Gian Maria [1 ]
Duong Ngoc Son [2 ]
机构
[1] Scuola Normale Super Pisa, Res Unit, Ist Nazl Alta Matemat F Severi, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Phenikaa Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam
基金
奥地利科学基金会;
关键词
D O I
10.1090/proc/16077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A real hypersurface in C-2 is said to be Reinhardt if it is invariant under the standard T-2-action on C-2. Its CR geometry can be described in terms of the curvature function of its "generating curve", i.e., the logarithmic image of the hypersurface in the plane R-2. We give a sharp upper bound for the first positive eigenvalue of the Kohn Laplacian associated to a natural pseudohermitian structure on a compact and strictly pseudoconvex Reinhardt real hypersurface having closed generating curve (which amounts to the T-2-action being free). Our bound is expressed in terms of the L-2-norm of the curvature function of the generating curve and is attained if and only if the curve is a circle.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [21] NEW UPPER BOUND ON THE LARGEST LAPLACIAN EIGENVALUE OF GRAPHS
    Taheri, Hassan
    Fath-Tabar, Gholam Hossein
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 533 - 540
  • [22] Sharp upper bound for the first eigenvalue
    Binoy, Raveendran
    Santhanam, G.
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 397 - 410
  • [23] Sharp upper bound for the first eigenvalue
    Raveendran Binoy
    G. Santhanam
    Geometriae Dedicata, 2014, 169 : 397 - 410
  • [24] A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs
    Das, KC
    Bapat, RB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 : 153 - 165
  • [25] The upper bound for the largest signless Laplacian eigenvalue of weighted graphs
    Gazi University, Departments Mathematic, Teknikokullar
    Ankara
    06500, Turkey
    不详
    Ankara
    06500, Turkey
    GU J. Sci., 4 (709-714):
  • [26] A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 625 - 633
  • [27] The Upper Bound for the Largest Signless Laplacian Eigenvalue of Weighted Graphs
    Buyukkose, Serife
    Mutlu, Nursah
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (04): : 709 - 714
  • [28] A New Upper Bound on the Largest Laplacian Eigenvalue of Weighted Graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 235 - 237
  • [29] A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph
    Shu, JL
    Hong, Y
    Wen-Ren, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) : 123 - 129
  • [30] Upper Bounds on the First Eigenvalue for the p-Laplacian
    Zhi Li
    Guangyue Huang
    Mediterranean Journal of Mathematics, 2020, 17