Highly flexible and transparent triboelectric nanogenerators toward reliable energy harvesting and recognition

被引:6
|
作者
Wan, Jiajia [1 ,2 ]
Wang, Shufen [1 ]
Liu, Yue [1 ,3 ]
Zong, Yuting [1 ,3 ]
Li, Honglin [1 ,2 ,3 ]
Chen, Wenlong [1 ,3 ]
Li, Peng [2 ]
Chen, Zhenming [1 ,2 ]
Huang, Junjun [1 ,2 ]
机构
[1] Hefei Univ, Sch Energy Mat & Chem Engn, Hefei 230601, Peoples R China
[2] Hezhou Univ, Coll Mat & Chem Engn, Guangxi Key Lab Calcium Carbonate Resources Compre, Hezhou 542899, Peoples R China
[3] Chaohu Univ, Sch Chem & Chem Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerators; Transparency; Hand recognition; Energy harvesting; Machine learning; HYBRID NANOGENERATOR; DRIVEN; MECHANISM;
D O I
10.1016/j.nanoen.2024.109377
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENG) have been a research hotspot with the rapid development of medical rehabilitation, environmental monitoring and human -computer interaction. However, most of the existing studies are based on the electric-collecting properties of TENG device, and few studies have considered the light transmittance of TENG device. Here, we propose a strategy for this dilemma. That is the transparent TENG device, which displays a remarkable charge generation ability, transparent and reliable performance. The measured voltage values show a steady change trend regardless of different days, bending times or bending angles, suggesting the excellent stability of the transparent TENG device. More importantly, the transparency property of TENG solves the light transmission problem of the TENG device integrated materials, which supplies a satisfactory solution to expand application scenarios for current TENG device. An idea based on the recognition of human hands in transparent scenarios is proposed. The hand recognition rate of the transparent TENG is as high as 100% in the accuracy test of six volunteers. In addition, we carried out the real -time identification of four individuals based on the data processing and display module of the transparent TENG device and the recognition rates were 100%, 100%, 81% and 26%. This study proposes a new method to design single electrode TENG device showing its effectiveness in light transmission applications and superior electrical properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvesting
    Zhong, Wei
    Xu, Bingang
    Gao, Yuanyuan
    NANO ENERGY, 2022, 92
  • [32] Three-Dimensional Piezoelectric-Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting
    Unsal, Omer Faruk
    Bedeloglu, Ayse C. elik
    ACS APPLIED NANO MATERIALS, 2023, 6 (16) : 14656 - 14668
  • [33] Realistic Circuit Modeling Using Derating Factors for Triboelectric Nanogenerators in Energy Harvesting Applications
    Yoon, Bo-Kyung
    Jung, Jee-Hoon
    Baik, Jeong Min
    Kim, Katherine A.
    2019 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ECCE ASIA (ICPE 2019 - ECCE ASIA), 2019,
  • [34] Tilting-Sensitive Triboelectric Nanogenerators for Energy Harvesting from Unstable/Fluctuating Surfaces
    Zhong, Wei
    Xu, Liang
    Wang, Haiming
    An, Jie
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)
  • [35] Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review
    João V. Vidal
    Vladislav Slabov
    Andrei L. Kholkin
    Marco P. Soares dos Santos
    Nano-Micro Letters, 2021, 13
  • [36] Dripping Channel Based Liquid Triboelectric Nanogenerators for Energy Harvesting and Sensing
    Zhong, Wei
    Xu, Liang
    Zhan, Fei
    Wang, Haiming
    Wang, Fan
    Wang, Zhong Lin
    ACS NANO, 2020, 14 (08) : 10510 - 10517
  • [37] Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting
    Jingu Jeong
    Eunhwan Jo
    Jong-An Choi
    Yunsung Kang
    Soonjae Pyo
    Micro and Nano Systems Letters, 13 (1)
  • [38] Graphene-based triboelectric nanogenerators for energy-harvesting applications
    Chakraborthy, Aniket
    Nuthalapati, Suresh
    Nag, Anindya
    Altinsoy, Mehmet E.
    He, Shan
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 380
  • [39] Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing
    Haroun, Ahmed
    Tarek, Mohamed
    Mosleh, Mohamed
    Ismail, Farouk
    NANOMATERIALS, 2022, 12 (17)
  • [40] Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review
    Vidal, Joao V.
    Slabov, Vladislav
    Kholkin, Andrei L.
    Soares dos Santos, Marco P.
    NANO-MICRO LETTERS, 2021, 13 (01)