共 45 条
Quasi-hexagonal nanopatterned porous cobalt ferrite thin films prepared via block copolymer self-assembly
被引:1
作者:
Castro, Alichandra
[1
]
Ferreira, Liliana P.
[2
,3
]
Godinho, Margarida
[3
]
Rodriguez, Brian J.
[4
,5
]
Vilarinho, Paula M.
[1
]
Ferreira, Paula
[1
]
机构:
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, Aveiro, Portugal
[2] Univ Coimbra, Dept Phys, Coimbra, Portugal
[3] Univ Lisbon, Biosyst & Integrat Sci Inst BioISI, FCUL, Lisbon, Portugal
[4] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[5] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
来源:
NANO SELECT
|
2024年
/
5卷
/
7-8期
基金:
爱尔兰科学基金会;
关键词:
cobalt ferrite;
ferromagnetic properties;
magnetic force microscopy;
nanopatterning;
porosity;
NANOSTRUCTURES;
LITHOGRAPHY;
FABRICATION;
D O I:
10.1002/nano.202300113
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
We present a novel method for fabricating dense and nanopatterned porous cobalt ferrite (CoFe2O4) thin films with a remarkable thickness of 65 nm, achieved through direct block copolymer self-assembly. By decomposing the block copolymer and inducing crystallization of the spinel phase, we successfully produce films exhibiting quasi-hexagonal arrays of pores with an average diameter ranging from 60 to 80 nm. The resulting nanopatterned porous thin films demonstrate exceptional orderliness, as the pores are intricately designed by the cobalt ferrite grains, and the platinum substrate offers complete accessibility in the pore area. Our findings reveal high magnetization values, comparable to those of bulk CoFe2O4, in the dense film. Additionally, in the case of the nanopatterned porous film, we observed a distinctive contribution of perpendicular magnetization. This innovative approach holds great promise for advanced magnetization and thin-film engineering applications.
引用
收藏
页数:8
相关论文