On the incompressible and non-resistive limit of 3D compressible magnetohydrodynamic equations in bounded domains

被引:0
作者
Gu, Xiaoyu [1 ]
Ou, Yaobin [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamic equations; Incompressible limit; Non-resistive limit; Bounded domains; Ill-prepared initial data; MACH NUMBER LIMIT; NAVIER-STOKES EQUATIONS; SINGULAR LIMITS; ASYMPTOTIC LIMITS; PREPARED DATA; INITIAL DATA; EXISTENCE; SYSTEM;
D O I
10.1016/j.nonrwa.2023.104047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the incompressible and non-resistive limit for the initial boundary value problem of isentropic compressible resistive magnetohydrodynamic equations with ill prepared initial data in three-dimensional bounded domains. We establish the higher-order uniform estimates with respect to both the Mach number and the resistivity coefficient in the framework of new type of weighted Sobolev spaces. Then we obtain the strong convergence of the magnetic field and the divergence-free component of the velocity field, as both the Mach number and the resistivity coefficient tend to zero.
引用
收藏
页数:23
相关论文
共 44 条
  • [1] On the Global Solution of a 3-D MHD System with Initial Data near Equilibrium
    Abidi, Hammadi
    Zhang, Ping
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (08) : 1509 - 1561
  • [2] Bourguignon J. P., 1974, J.Funct. Anal, V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
  • [3] Three-Scale Singular Limits of Evolutionary PDEs
    Cheng, Bin
    Ju, Qiangchang
    Schochet, Steve
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) : 601 - 625
  • [4] Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains
    Cui, Wenqian
    Ou, Yaobin
    Ren, Dandan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (01) : 263 - 288
  • [5] LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN FOR ALL TIME
    Dou, Changsheng
    Ju, Qiangchang
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (04) : 661 - 679
  • [6] Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary
    Dou, Changsheng
    Jiang, Song
    Ju, Qiangchang
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (06): : 1661 - 1678
  • [7] On the vanishing dissipation limit for the incompressible MHD equations on bounded domains
    Duan, Qin
    Xiao, Yuelong
    Xin, Zhouping
    [J]. SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 31 - 50
  • [8] Evans L.C., 2022, Partial Differential Equations, V19
  • [9] Fan J., 2015, DISCRETE CONT DYN-A, P387
  • [10] Strong solution to the compressible magnetohydrodynamic equations with vacuum
    Fan, Jishan
    Yu, Wanghui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) : 392 - 409