Continuous Amorphous Metal-Organic Frameworks Layer Boosts the Performance of Metal Anodes

被引:53
作者
Xiang, Yang [1 ,2 ]
Zhou, Liyuan [1 ,2 ]
Tan, Pingping [1 ]
Dai, Shuai [2 ]
Wang, Yannan [3 ]
Bao, Shujuan [1 ]
Lu, Yingying [2 ,4 ]
Jiang, Yinzhu [2 ,5 ]
Xu, Maowen [1 ]
Zhang, Xuan [2 ,3 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Chongqing 400715, Peoples R China
[2] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[3] Katholieke Univ Leuven, Dept Mat Engn, B-3000 Leuven, Belgium
[4] Zhejiang Univ, Inst Pharmaceut Engn, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Metal Anodes; Amorphous MOFs; Flexibility; Protective Layer; Aqueous Zinc Ion Battery; Ultra-Long Cycling Life; ZINC ANODE; LONG-LIFE; DENDRITE; INTERFACES; ADSORPTION; BATTERIES; GROWTH;
D O I
10.1021/acsnano.3c06367
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Employing metal anodes can greatly increase the volumetric/gravimetric energy density versus a conventional ion-insertion anode. However, metal anodes are plagued by dendrites, corrosion, and interfacial side reaction issues. Herein, a continuous and flexible amorphous MOF layer was successfully synthesized and used as a protective layer on metal anodes. Compared with the crystalline MOF layer, the continuous amorphous MOF layer can inhibit dendrite growth at the grain boundary and eliminate ion migration near the grain boundary, showing high interfacial adhesion and a large ion migration number (t(Zn)(2+) = 0.75). In addition, the continuous amorphous MOF layer can effectively solve several key challenges, e.g., corrosion of the zinc anode, hydrogen evolution reaction, and dendrite growth on the zinc surface. The prepared Zn anode with the continuous amorphous MOF (AMOF) layer exhibited an ultralong cycling life (around one year, more than 7900 h) and a low overpotential (<40 mV), which is 12 times higher than that of the crystalline MOF protective layer. Even at 10 mA cm(-2), it still showed high stability for more than 5500 cycles (1200 h). The enhanced performance is realized for full cells paired with a MnO2 cathode. In addition, a flexible symmetrical battery with the Zn@A-ZIF-8 anode exhibited good cyclability under different bending angles (0 degrees, 90 degrees, and 180 degrees). More importantly, various metal substrates were successfully coated with compact A-ZIF-8. The A-ZIF-8 layer can obviously improve the stability of other metal anodes, including those of Mg and Al. These results not only demonstrate the high potential of amorphous MOF-decorated Zn anodes for AZIBs but also propose a type of protective layer for metal anodes.
引用
收藏
页码:19275 / 19287
页数:13
相关论文
共 49 条
[1]   Micromechanical Behavior of Polycrystalline Metal-Organic Framework Thin Films Synthesized by Electrochemical Reaction [J].
Buchan, Imogen ;
Ryder, Matthew R. ;
Tan, Jin-Chong .
CRYSTAL GROWTH & DESIGN, 2015, 15 (04) :1991-1999
[2]   On the electrochemical deposition of metal-organic frameworks [J].
Campagnol, Nicolo ;
Van Assche, Tom R. C. ;
Li, Minyuan ;
Stappers, Linda ;
Dinca, Mircea ;
Denayer, Joeri F. M. ;
Binnemans, Koen ;
De Vos, Dirk E. ;
Fransaer, Jan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (10) :3914-3925
[3]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[4]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[5]   In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes [J].
Chu, Yuzhu ;
Zhang, Shu ;
Wu, Shuang ;
Hu, Zhenglin ;
Cui, Guanglei ;
Luo, Jiayan .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3609-3620
[6]   Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase [J].
Di, Shengli ;
Nie, Xueyu ;
Ma, Guoqiang ;
Yuan, Wentao ;
Wang, Yuanyuan ;
Liu, Yongchang ;
Shen, Shigang ;
Zhang, Ning .
ENERGY STORAGE MATERIALS, 2021, 43 :375-382
[7]   Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties [J].
Dong, Panpan ;
Zhang, Xiahui ;
Hiscox, William ;
Liu, Juejing ;
Zamora, Julio ;
Li, Xiaoyu ;
Su, Muqiao ;
Zhang, Qiang ;
Guo, Xiaofeng ;
McCloy, John ;
Song, Min-Kyu .
ADVANCED MATERIALS, 2023, 35 (32)
[8]   Anodic electrodeposition of continuous metal-organic framework films with robust adhesion by pre-anchored strategy [J].
Guo, Wei ;
Monnens, Wouter ;
Zhang, Wei ;
Xie, Sijie ;
Han, Ning ;
Zhou, Zhenyu ;
Chanut, Nicolas ;
Vanstreels, Kris ;
Ameloot, Rob ;
Zhang, Xuan ;
Fransaer, Jan .
MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 350
[9]   Benzene adsorption on synthesized and commercial metal-organic frameworks [J].
Gwardiak, Sylwia ;
Szczesniak, Barbara ;
Choma, Jerzy ;
Jaroniec, Mietek .
JOURNAL OF POROUS MATERIALS, 2019, 26 (03) :775-783
[10]   A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries [J].
Hou, Zhiguo ;
Zhang, Tengsheng ;
Liu, Xin ;
Xu, Zhibin ;
Liu, Jiahao ;
Zhou, Wanhai ;
Qian, Yitai ;
Fan, Hong Jin ;
Chao, Dongliang ;
Zhao, Dongyuan .
SCIENCE ADVANCES, 2022, 8 (41)