Frequency-Based Motion Representation for Video Generative Adversarial Networks

被引:0
作者
Hyun, Sangeek [1 ]
Lew, Jaihyun [2 ]
Chung, Jiwoo [1 ]
Kim, Euiyeon [1 ]
Heo, Jae-Pil [3 ]
机构
[1] Sungkyunkwan Univ, Dept Artificial Intelligence, Suwon 16419, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Artificial Intelligence, Seoul 08826, South Korea
[3] Sungkyunkwan Univ, Dept Comp Sci & Engn, Suwon 16419, South Korea
关键词
Generative adversarial networks; video generation; sinusoidal motion representation; speed-level motion manipulation;
D O I
10.1109/TIP.2023.3293767
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Videos contain motions of various speeds. For example, the motions of one's head and mouth differ in terms of speed - the head being relatively stable and the mouth moving rapidly as one speaks. Despite its diverse nature, previous video GANs generate video based on a single unified motion representation without considering the aspect of speed. In this paper, we propose a frequency-based motion representation for video GANs to realize the concept of speed in video generation process. In detail, we represent motions as continuous sinusoidal signals of various frequencies by introducing a coordinate-based motion generator. We show, in that case, frequency is highly related to the speed of motion. Based on this observation, we present frequency-aware weight modulation that enables manipulation of motions within a specific range of speed, which could not be achieved with the previous techniques. Extensive experiments validate that the proposed method outperforms state-of-the-art video GANs in terms of generation quality by its capability to model various speed of motions. Furthermore, we also show that our temporally continuous representation enables to further synthesize intermediate and future frames of generated videos.
引用
收藏
页码:3949 / 3963
页数:15
相关论文
共 50 条
  • [31] Image Creation Based on Transformer and Generative Adversarial Networks
    Liu, Hangyu
    Liu, Qicheng
    IEEE ACCESS, 2022, 10 : 108296 - 108306
  • [32] Face attribute editing based on generative adversarial networks
    Xiaoxia Song
    Mingwen Shao
    Wangmeng Zuo
    Cunhe Li
    Signal, Image and Video Processing, 2020, 14 : 1217 - 1225
  • [33] Exploring Expression-based Generative Adversarial Networks
    Baeta, Francisco
    Correia, Joao
    Martins, Tiago
    Machado, Penousal
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 1862 - 1869
  • [34] Age Estimation Method Based on Generative Adversarial Networks
    Ning, Xin
    Li, Weijun
    Sun, Linjun
    2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY, CII 2017, 2017, : 333 - 340
  • [35] Texture synthesis method based on generative adversarial networks
    Yu S.
    Han Z.
    Tang Y.
    Wu C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2018, 47 (02):
  • [36] Essential protein prediction based on generative adversarial networks
    Lu, Pengli
    Qiao, Guoxin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025,
  • [37] Wireless signal enhancement based on generative adversarial networks
    Zhou, Xue
    Sun, Zhuo
    Wu, Hengmiao
    AD HOC NETWORKS, 2020, 103
  • [38] Face attribute editing based on generative adversarial networks
    Song, Xiaoxia
    Shao, Mingwen
    Zuo, Wangmeng
    Li, Cunhe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (06) : 1217 - 1225
  • [39] Image Hazing Algorithm Based on Generative Adversarial Networks
    Xiao, Jinsheng
    Zhou, Jinglong
    Lei, Junfeng
    Xu, Chuan
    Sui, Haigang
    IEEE ACCESS, 2020, 8 : 15883 - 15894
  • [40] Detection of damaged buildings based on generative adversarial networks
    Ge X.
    Chen X.
    Zhao W.
    Li R.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (02): : 238 - 247