Ultra-superior high-temperature energy storage properties in polymer nanocomposites via rational design of core-shell structured inorganic antiferroelectric fillers

被引:43
作者
Fan, Zhenhao [1 ,2 ]
Gao, Shuaibing [1 ]
Chang, Yunfei [2 ]
Wang, Dawei [2 ]
Zhang, Xin [3 ]
Huang, Haitao [4 ]
He, Yunbin [1 ]
Zhang, Qingfeng [1 ]
机构
[1] Hubei Univ, Sch Mat Sci & Engn, Wuhan 430062, Peoples R China
[2] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150080, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DENSITY; EFFICIENCY; DIELECTRICS; DEPOSITION; CERAMICS;
D O I
10.1039/d2ta09658g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current polymer nanocomposites for energy storage suffer from both low discharged energy density (U-e) and efficiency (eta) with increasing temperature due to their large remnant electric displacement (D-r), small breakdown strength and high conduction loss at high temperature. To solve these issues, herein, polyetherimide (PEI) nanocomposites filled with core-shell structured nanoparticles, composed of a (Pb,La)(Zr,Sn,Ti)O-3 (PLZST) antiferroelectric core and an Al2O3 shell, are developed. The PLZST core possesses large maximum electric displacement (D-max) and low D-r in a wide temperature range, which helps refine high-temperature electric displacement-electric field loops of the nanocomposites. The utilization of the Al2O3 shell with dielectric constant close to that of the PEI matrix, wide band gap, and high thermal conductivity alleviates the distortion of the electric field around inorganic fillers, creates deep traps and promotes Joule heat dissipation, resulting in improved breakdown strength and suppressed conduction loss. Consequently, an ultrahigh U-e of 10.20 J cm(-3) at 150 degrees C, which is a record high value for dielectric polymer composites at elevated temperature, is achieved with a large eta of 83.5%, simultaneously. Finite element simulations reveal the influence of the core-shell structure on electrical tree evolution, electric field distribution and internal temperature in nanocomposites, and prove the rationality of the design strategy.
引用
收藏
页码:7227 / 7238
页数:12
相关论文
共 42 条
[1]   Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Ai, Ding ;
Li, He ;
Zhou, Yao ;
Ren, Lulu ;
Han, Zhubing ;
Yao, Bin ;
Zhou, Wei ;
Zhao, Ling ;
Xu, Jianmei ;
Wang, Qing .
ADVANCED ENERGY MATERIALS, 2020, 10 (16)
[2]   Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application [J].
Chen, Hanxi ;
Pan, Zhongbin ;
Wang, Weilin ;
Chen, Yuyun ;
Xing, Shuang ;
Cheng, Yu ;
Ding, Xiangping ;
Liu, Jinjun ;
Zhai, Jiwei ;
Yu, Jinhong .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 142
[3]   Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage [J].
Cheng, Sang ;
Zhou, Yao ;
Li, Yushu ;
Yuan, Chao ;
Yang, Mingcong ;
Fu, Jing ;
Hu, Jun ;
He, Jinliang ;
Li, Qi .
ENERGY STORAGE MATERIALS, 2021, 42 :445-453
[4]   Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Dai, Zhizhan ;
Bao, Zhiwei ;
Ding, Song ;
Liu, Chuanchuan ;
Sun, Haoyang ;
Wang, He ;
Zhou, Xiang ;
Wang, Yuchen ;
Yin, Yuewei ;
Li, Xiaoguang .
ADVANCED MATERIALS, 2022, 34 (05)
[5]   Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region [J].
Dong, Jiufeng ;
Hu, Renchao ;
Niu, Yujuan ;
Sun, Liang ;
Li, Liuting ;
Li, Shuai ;
Pan, Desheng ;
Xu, Xinwei ;
Gong, Rui ;
Cheng, Jin ;
Pan, Zizhao ;
Wang, Qing ;
Wang, Hong .
NANO ENERGY, 2022, 99
[6]   A Facile In Situ Surface-Functionalization Approach to Scalable Laminated High-Temperature Polymer Dielectrics with Ultrahigh Capacitive Performance [J].
Dong, Jiufeng ;
Hu, Renchao ;
Xu, Xinwei ;
Chen, Jie ;
Niu, Yujuan ;
Wang, Feng ;
Hao, Jianyu ;
Wu, Kai ;
Wang, Qing ;
Wang, Hong .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (32)
[7]   Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles [J].
Fan, Mingzhi ;
Hu, Penghao ;
Dan, Zhenkang ;
Jiang, Jianyong ;
Sun, Binzhou ;
Shen, Yang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) :24536-24542
[8]   High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer [J].
Li, Chunyu ;
Yao, Manwen ;
Gao, Wenbin ;
Yao, Xi .
CERAMICS INTERNATIONAL, 2020, 46 (01) :722-730
[9]   Dielectric polymers for high-temperature capacitive energy storage [J].
Li, He ;
Zhou, Yao ;
Liu, Yang ;
Li, Li ;
Liu, Yi ;
Wang, Qing .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (11) :6369-6400
[10]   Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers [J].
Li, He ;
Ai, Ding ;
Ren, Lulu ;
Yao, Bin ;
Han, Zhubing ;
Shen, Zhonghui ;
Wang, Jianjun ;
Chen, Long-Qing ;
Wang, Qing .
ADVANCED MATERIALS, 2019, 31 (23)