Modeling and Characterization of Tensegrity Structures Integrating Dielectric Elastomer Actuators

被引:4
作者
Watanabe, Shuya [1 ]
Ikemoto, Yusuke [2 ]
Shintake, Jun [1 ]
机构
[1] Univ Electrocommun, Dept Mech & Intelligent Syst Engn, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Meijo Univ, Dept Mech Engn, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya 4688502, Japan
基金
日本学术振兴会;
关键词
dielectric elastomer actuators; robotics; smart materials; soft robotics; tensegrity; SOFT; DESIGN;
D O I
10.1002/adem.202201471
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tensegrity structures, architectures that consist of elastic cables and rigid rods, have attracted attention as a building block of robots because of their compliance, lightweight properties, and mechanical robustness. This article describes a method to create electroactive tensegrity structures that employs a dielectric elastomer actuator (DEA) as the actuation principle. Two different types of DEA-tensegrities are considered herein: a membrane type and a cable type. In these devices, DEAs are made of an acrylic elastomer (3 m, VHB 4905) and a stretchable conductive film (Adhesives Research, ARcare 90336) used as dielectric and electrode layers, respectively. An analytical model of DEA-tensegrities is built that guides the fabrication of experimental devices. The fabricated DEA-tensegrities are characterized by the actuation strain in the height direction. As a result, voltage-controlled actuation strains of 7.5% and 2.0% are observed at 10 kV for membrane type and cable type DEA-tensegrity, respectively, while the model prediction captures the actuation characteristics.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Multi-functional dielectric elastomer artificial muscles for soft and smart machines [J].
Anderson, Iain A. ;
Gisby, Todd A. ;
McKay, Thomas G. ;
O'Brien, Benjamin M. ;
Calius, Emilio P. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (04)
[2]   Rolling Soft Membrane-Driven Tensegrity Robots [J].
Baines, Robert L. ;
Booth, Joran W. ;
Kramer-Bottiglio, Rebecca .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :6567-6574
[3]   Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers [J].
Biggs, James ;
Danielmeier, Karsten ;
Hitzbleck, Julia ;
Krause, Jens ;
Kridl, Tom ;
Nowak, Stephan ;
Orselli, Enrico ;
Quan, Xina ;
Schapeler, Dirk ;
Sutherland, Will ;
Wagner, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (36) :9409-9421
[4]   Design and control of compliant tensegrity robots through simulation and hardware validation [J].
Caluwaerts, Ken ;
Despraz, Jeremie ;
Iscen, Atil ;
Sabelhaus, Andrew P. ;
Bruce, Jonathan ;
Schrauwen, Benjamin ;
SunSpiral, Vytas .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (98)
[5]   Body Stiffness Variation of a Tensegrity Robotic Fish Using Antagonistic Stiffness in a Kinematically Singular Configuration [J].
Chen, Bingxing ;
Jiang, Hongzhou .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (05) :1712-1727
[6]   Swimming Performance of a Tensegrity Robotic Fish [J].
Chen, Bingxing ;
Jiang, Hongzhou .
SOFT ROBOTICS, 2019, 6 (04) :520-531
[7]   Jumping Tensegrity Robot Based on Torsionally Prestrained SMA Springs [J].
Chung, Yoon Seop ;
Lee, Ji-Hyeong ;
Jang, Jae Hyuck ;
Choi, Hyouk Ryeol ;
Rodrigue, Hugo .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) :40793-40799
[8]   Biomedical applications of soft robotics [J].
Cianchetti, Matteo ;
Laschi, Cecilia ;
Menciassi, Arianna ;
Dario, Paolo .
NATURE REVIEWS MATERIALS, 2018, 3 (06) :143-153
[9]   Design and experiments of a novel quadruped robot with tensegrity legs [J].
Cui, Junxiao ;
Wang, Panfeng ;
Sun, Tao ;
Ma, Shuai ;
Liu, Shibo ;
Kang, Rongjie ;
Guo, Fan .
MECHANISM AND MACHINE THEORY, 2022, 171
[10]  
De Oliveira, 2009, TENSEGRITY SYSTEMS