Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network

被引:18
作者
Nazari-Farsani, Sanaz [1 ]
Yu, Yannan [1 ,2 ]
Armindo, Rui Duarte [1 ,3 ]
Lansberg, Maarten [4 ]
Liebeskind, David S. [5 ]
Albers, Gregory [4 ]
Christensen, Soren [4 ]
Levin, Craig S. [1 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Massachusetts, Mem Med Ctr, Internal Med Dept, Boston, MA 02125 USA
[3] Hosp Beatriz Angelo, Dept Neuroradiol, Lisbon, Portugal
[4] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
关键词
Acute ischemic stroke; Lesion segmentation; MRI; DWI; PWI; Deep learning; INFARCT GROWTH; TISSUE; GADOLINIUM; PERFUSION;
D O I
10.1016/j.nicl.2022.103278
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final infarct volume and location in acute stroke patients.Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusionweighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values less than 620 x 10-6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (rho c) of the predicted and true infarct volumes.Results: The model obtained a median AUC of 0.91 (IQR: 0.84-0.96). After thresholding at an infarction probability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16-0.84) and 0.97 (IQR: 0.93-0.99), respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17-0.66) and 27 ml (IQR: 7-60 ml), respectively. The model's predicted lesion volumes showed high correlation with ground truth volumes (rho c = 0.73, p < 0.01). Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes at 3-7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may enable treatment decisions to be made with shorter stroke imaging protocols.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review [J].
Bernal, Jose ;
Kushibar, Kaisar ;
Asfaw, Daniel S. ;
Valverde, Sergi ;
Oliver, Arnau ;
Marti, Robert ;
Llado, Xavier .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 :64-81
[2]   Perfusion CT in Acute Stroke: A Comprehensive Analysis of Infarct and Penumbra [J].
Bivard, Andrew ;
Levi, Christopher ;
Spratt, Neil ;
Parsons, Mark .
RADIOLOGY, 2013, 267 (02) :543-550
[3]   Stroke subtype classification by geometrical descriptors of lesion shape [J].
Cheng, Bastian ;
Knaack, Christian ;
Forkert, Nils Daniel ;
Schnabel, Renate ;
Gerloff, Christian ;
Thomalla, Goetz .
PLOS ONE, 2017, 12 (12)
[4]   Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke [J].
Choi, Youngwon ;
Kwon, Yongchan ;
Lee, Hanbyul ;
Kim, Beom Joon ;
Paik, Myunghee Cho ;
Won, Joong-Ho .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :231-243
[5]   Visualizing Multimodal Deep Learning for Lesion Prediction [J].
Gillmann, Christina ;
Peter, Lucas ;
Schmidt, Carlo ;
Saur, Dorothee ;
Scheuermann, Gerik .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2021, 41 (05) :90-98
[6]   Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning Lessons From the ISLES Challenge [J].
Hakim, Arsany ;
Christensen, Soren ;
Winzeck, Stefan ;
Lansberg, Maarten G. ;
Parsons, Mark W. ;
Lucas, Christian ;
Robben, David ;
Wiest, Roland ;
Reyes, Mauricio ;
Zaharchuk, Greg .
STROKE, 2021, 52 (07) :2328-2337
[7]   Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis [J].
High, Whitney A. ;
Ayers, Reed A. ;
Chandler, John ;
Zito, Gary ;
Cowper, Shawn E. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2007, 56 (01) :21-26
[8]   A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network [J].
Karthik, R. ;
Gupta, Utkarsh ;
Jha, Ashish ;
Rajalakshmi, R. ;
Menaka, R. .
APPLIED SOFT COMPUTING, 2019, 84
[9]   Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease [J].
Kijowski, Richard ;
Liu, Fang ;
Caliva, Francesco ;
Pedoia, Valentina .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (06) :1607-1619
[10]  
Kingma DP, 2014, ADV NEUR IN, V27