Resurgence and Partial Theta Series

被引:1
作者
Han, Li [1 ,2 ]
Li, Yong [3 ,4 ]
Sauzin, David [1 ,5 ]
Sun, Shanzhong [1 ,6 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[4] Nankai Univ, Lab Pure Math & Combinator, Tianjin, Peoples R China
[5] Paris Sci & Lettres Univ, Ctr Natl Rech Sci, Observ Paris, Paris, France
[6] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing, Peoples R China
基金
欧洲研究理事会; 国家重点研发计划;
关键词
resurgence; modularity; partial theta series; topological quantum field theory;
D O I
10.1134/S001626632303005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider partial theta series associated with periodic sequences of coefficients, of the form Theta(tau):=& sum;(n>0)n(nu)f(n)e(i pi n2 tau/M), with nu non-negative integer and an M-periodic function f : Z -> C. Such a function is analytic in the half-plane {Im(tau)>0} and as tau tends non-tangentially to any alpha is an element of Q, a formal power series appears in the asymptotic behaviour of Theta(tau), depending on the parity of nu and f. We discuss the summability and resurgence properties of these series by means of explicit formulas for their formal Borel transforms, and the consequences for the modularity properties of Theta, or its ``quantum modularity'' properties in the sense of Zagier's recent theory. The Discrete Fourier Transform of f plays an unexpected role and leads to a number-theoretic analogue of & Eacute;calle's ``Bridge Equations''. The motto is: (quantum) modularity = Stokes phenomenon + Discrete Fourier Transform.
引用
收藏
页码:248 / 265
页数:18
相关论文
共 18 条
[11]  
Lawrence R., 1999, ASIAN J MATH, V3, P93, DOI [10.4310/AJM.1999.v3.n1.a5, DOI 10.4310/AJM.1999.V3.N1.A5]
[12]  
Mitschi C., 2016, Lecture Notes in Mathematics, DOI DOI 10.1007/978-3-319-28736-2
[13]   NONLINEAR ANALYSIS WITH RESURGENT FUNCTIONS [J].
Sauzin, David .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (03) :667-702
[14]   Mould expansions for the saddle-node and resurgence monomials [J].
Sauzin, David .
RENORMALIZATION AND GALOIS THEORIES, 2009, 15 :83-+
[15]   MODULAR FORMS OF HALF INTEGRAL WEIGHT [J].
SHIMURA, G .
ANNALS OF MATHEMATICS, 1973, 97 (03) :440-481
[16]   Vassiliev invariants and a strange identity related to the Dedekind eta-function [J].
Zagier, D .
TOPOLOGY, 2001, 40 (05) :945-960
[17]  
Zagier D., 2010, CLAY MATH P, V11, P659
[18]   The dilogarithm function [J].
Zagier, Don .
Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization, 2007, :3-65