Resurgence and Partial Theta Series

被引:0
作者
Han, Li [1 ,2 ]
Li, Yong [3 ,4 ]
Sauzin, David [1 ,5 ]
Sun, Shanzhong [1 ,6 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[4] Nankai Univ, Lab Pure Math & Combinator, Tianjin, Peoples R China
[5] Paris Sci & Lettres Univ, Ctr Natl Rech Sci, Observ Paris, Paris, France
[6] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing, Peoples R China
基金
欧洲研究理事会; 国家重点研发计划;
关键词
resurgence; modularity; partial theta series; topological quantum field theory;
D O I
10.1134/S001626632303005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider partial theta series associated with periodic sequences of coefficients, of the form Theta(tau):=& sum;(n>0)n(nu)f(n)e(i pi n2 tau/M), with nu non-negative integer and an M-periodic function f : Z -> C. Such a function is analytic in the half-plane {Im(tau)>0} and as tau tends non-tangentially to any alpha is an element of Q, a formal power series appears in the asymptotic behaviour of Theta(tau), depending on the parity of nu and f. We discuss the summability and resurgence properties of these series by means of explicit formulas for their formal Borel transforms, and the consequences for the modularity properties of Theta, or its ``quantum modularity'' properties in the sense of Zagier's recent theory. The Discrete Fourier Transform of f plays an unexpected role and leads to a number-theoretic analogue of & Eacute;calle's ``Bridge Equations''. The motto is: (quantum) modularity = Stokes phenomenon + Discrete Fourier Transform.
引用
收藏
页码:248 / 265
页数:18
相关论文
共 24 条
  • [1] Resurgence analysis of quantum invariants of Seifert fibered homology spheres
    Andersen, Jorgen Ellegaard
    Mistegard, William Elbaek
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (02): : 709 - 764
  • [2] Bringmann K, 2019, RES MATH SCI, V6, DOI 10.1007/s40687-019-0182-4
  • [3] Collaboration The LMFDB, 2022, The L-functions and modular forms database
  • [4] RESURGENCE OF THE KONTSEVICH-ZAGIER SERIES
    Costin, Ovidiu
    Garoufalidis, Stavros
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (03) : 1225 - 1258
  • [5] On the resurgent approach to Ecalle-Voronin's invariants
    Dudko, Artem
    Sauzin, David
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (03) : 265 - 271
  • [6] The resurgent character of the Fatou coordinates of a simple parabolic germ
    Dudko, Artem
    Sauzin, David
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (03) : 255 - 261
  • [7] ECALLE J, 1993, NATO ADV SCI INST SE, V408, P75
  • [8] Ecalle J., 1981, FONCTIONS RESURGENTE, VI-III
  • [9] Flajolet P, 2000, FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, P191
  • [10] Quantum modularity of partial theta series with periodic coefficients
    Goswami, Ankush
    Osburn, Robert
    [J]. FORUM MATHEMATICUM, 2021, 33 (02) : 451 - 463