A Bifunctional Electrolyte Additive Features Preferential Coordination with Iodine toward Ultralong-Life Zinc-Iodine Batteries

被引:40
|
作者
Wang, Feifei [1 ,2 ,3 ,4 ]
Liang, Wenbin [1 ,3 ]
Liu, Xinyi [5 ]
Yin, Tianyu [1 ,3 ]
Chen, Zihui [1 ,3 ]
Yan, Zhijie [1 ,3 ]
Li, Fangbing [1 ,3 ]
Liu, Wei [5 ]
Lu, Jiong [4 ]
Yang, Chunpeng [1 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[5] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
competitive coordination; electrolyte additive; polyiodide; shuttle effect; Zn-I-2; battery;
D O I
10.1002/aenm.202400110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-iodine (Zn-I-2) battery is one of the most promising candidates for large-scale energy storage due to its cost-effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide "shuttle effect" in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I-2 based on the Lewis acid-base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non-dendritic Zn plating, contributing to impressive Coulombic efficiency and long-term cycling stability. As a result, the Zn-I-2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g(-1) (approximate to 100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn-I-2 batteries, marking a critical advancement in the field of energy storage technologies.
引用
收藏
页数:7
相关论文
共 12 条
  • [1] Stabilizing zinc anode with trace pyrrolidone hydrotribromide additive in electrolytes for long-life zinc-iodine batteries
    Guo, Yuchen
    Wang, Huan
    Li, Haiwen
    Wu, Haoteng
    Xu, Peng
    Xiao, Jun
    Wu, Haiwei
    ELECTROCHIMICA ACTA, 2025, 523
  • [2] Toward High-Energy-Density Aqueous Zinc-Iodine Batteries: Multielectron Pathways
    Zhang, Shao-Jian
    Hao, Junnan
    Wu, Han
    Kao, Chun-Chuan
    Chen, Qianru
    Ye, Chao
    Qiao, Shi-Zhang
    ACS NANO, 2024, 18 (42) : 28557 - 28574
  • [3] Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries
    Wu, Wanlong
    Li, Cuicui
    Wang, Ziqi
    Shi, Hua-Yu
    Song, Yu
    Liu, Xiao-Xia
    Sun, Xiaoqi
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [4] Polar-Nonpolar Synergy Toward High-Performance Aqueous Zinc-Iodine Batteries
    Zhu, Lingfeng
    Guan, Xinwei
    Zhang, Zhenfang
    Yuan, Zhilong
    Zhang, Congcong
    Wang, Ye
    Xue, Ruichang
    Mayes, Edwin L. H.
    Yong, Zijun
    Xu, Haimei
    Li, Xiaoning
    Li, Hui
    Jia, Baohua
    Yu, Hai
    Ma, Tianyi
    Sun, Yifei
    SMALL, 2025, 21 (13)
  • [5] Gelatinized starch as a low-cost and bifunctional binder enables shuttle-free aqueous zinc-iodine batteries
    Yu, Zheng-Tai
    Gong, Zong-Shuai
    Wen, Rui-Hang
    Hou, Ya-Jun
    Luo, Zhi-Qiang
    Yuan, Zhi-Hao
    Zhang, Ning
    RARE METALS, 2024, 43 (12) : 6351 - 6361
  • [6] Porous Aromatic Frameworks Enabling Polyiodide Confinement toward High Capacity and Long Lifespan Zinc-Iodine Batteries
    Hu, Junfang
    Zhang, Zhaofu
    Deng, Ting
    Cui, Feng Chao
    Shi, Xiaoyuan
    Tian, Yuyang
    Zhu, Guangshan
    ADVANCED MATERIALS, 2024, 36 (29)
  • [7] High-Energy Density Aqueous Zinc-Iodine Batteries with Ultra-long Cycle Life Enabled by the ZnI2 Additive
    Chen, Chaojie
    Li, Zhiwei
    Xu, Yinghong
    An, Yufeng
    Wu, Langyuan
    Sun, Yao
    Liao, Haojie
    Zheng, Kejun
    Zhang, Xiaogang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (39) : 13268 - 13276
  • [8] Long-life aqueous zinc-iodine batteries enabled by selective adsorption of polyiodide anions in nonporous adaptive organic cages
    Zhu, Zitong
    Luo, Dan
    Wei, Lu
    Chen, Jianxiong
    Jia, Tianqi
    Chi, Xiaodong
    Guo, Xin
    ENERGY STORAGE MATERIALS, 2025, 75
  • [9] Mullite Mineral-Derived Robust Solid Electrolyte Enables Polyiodide Shuttle-Free Zinc-Iodine Batteries
    Li, Fulong
    Zhou, Chuancong
    Zhang, Jie
    Gao, Yating
    Nan, Qing
    Luo, Junming
    Xu, Zhenming
    Zhao, Zejun
    Rao, Peng
    Li, Jing
    Kang, Zhenye
    Shi, Xiaodong
    Tian, Xinlong
    ADVANCED MATERIALS, 2024, 36 (38)
  • [10] Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase
    Huang, Yongxin
    Wang, Yiqing
    Peng, Xiyue
    Lin, Tongen
    Huang, Xia
    Alghamdi, Norah S.
    Rana, Masud
    Chen, Peng
    Zhang, Cheng
    Whittaker, Andrew K.
    Wang, Lianzhou
    Luo, Bin
    MATERIALS FUTURES, 2024, 3 (03):