Nodal solutions to (p, q)-Laplacian equations with critical growth

被引:0
作者
Pu, Hongling [1 ,2 ]
Liang, Sihua [3 ]
Ji, Shuguan [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
[3] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
关键词
(p; q)-Laplacian operator; Poisson equation; Critical growth; Variational methods; Nodal solutions; SCHRODINGER-POISSON SYSTEM; SIGN-CHANGING SOLUTIONS; KIRCHHOFF-TYPE PROBLEM; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.3233/ASY-231871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of (p, q)-Laplacian equations with critical growth is taken into consideration: { -Delta(p)u - Delta(q)u + (vertical bar u vertical bar(p-2) + vertical bar u vertical bar(q-2))u + lambda phi vertical bar u vertical bar(q-2)u = mu g(u) + vertical bar u vertical bar(q*-2)u, x is an element of R-3, -Delta phi = vertical bar u vertical bar(q), x is an element of R-3, where Delta(xi)u = div(vertical bar del u vertical bar(xi-2) del u) is the xi-Laplacian operator (xi = p, q), 3/2 < p < q < 3, lambda and mu are positive parameters, q* = 3q/(3 - q) is the Sobolev critical exponent. We use a primary technique of constrained minimization to determine the existence, energy estimate and convergence property of nodal (that is, sign-changing) solutions under appropriate conditions on g, and thus generalize the existing results.
引用
收藏
页码:133 / 156
页数:24
相关论文
共 36 条
[1]   Nodal ground state solution to a biharmonic equation via dual method [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) :5174-5201
[2]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[3]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[4]  
Aris R., 1979, RES NOTES MATH, V24
[5]   On a class of superlinear (p, q)-Laplacian type equations on RN [J].
Bartolo, R. ;
Candela, A. M. ;
Salvatore, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) :29-41
[6]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[7]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283, DOI [10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]  
Chen ST, 2016, Z ANGEW MATH PHYS, V67, DOI 10.1007/s00033-016-0695-2
[10]  
Cheng K., 2022, Complex Var. Elliptic Equ., P1