Kinetic Effect of Local pH on High-Voltage Aqueous Sodium-Ion Batteries

被引:0
|
作者
Nakamoto, Kosuke [1 ]
Tanaka, Miu [2 ]
Sakamoto, Ryo [1 ]
Ito, Masato [1 ]
Okada, Shigeto [1 ]
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
[2] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
基金
日本学术振兴会;
关键词
pH Gradient; Aqueous Battery; High Voltage; Self-discharge; ELECTROLYTE; FILMS;
D O I
10.5796/electrochemistry.23-00124
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The local pH values in the close vicinity of the cathode/anode were experimentally determined to be strongly acidic/weakly basic, respectively, during the operation of a high -voltage aqueous sodium -ion battery with Prussian blue -type electrodes and a concentrated aqueous electrolyte. The observed pH gradient was ascribed to O2/H2 evolution at the cathode/anode in aqueous cells, which should contribute to the expansion of the electrochemical window if the pH gradient is maintained. An increase in the distance between the cathode and anode proved to be one of possible solution to suppress the undesired pH neutralization. On the other hand, the reduction of water as well as the dissolved O2 in the electrolyte may diminish the capacity of the anode by a selfdischarge. This became more pronounced if the full cell was left to stand for a longer time after charging.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries
    Kuehnel, Ruben-Simon
    Reber, David
    Battaglia, Corsin
    ACS ENERGY LETTERS, 2017, 2 (09): : 2005 - 2006
  • [2] Revisiting ether electrolytes for high-voltage sodium-ion batteries
    Li, Shuaiqi
    Jin, Ming
    Song, Xinrui
    Xu, Shan
    Dou, Qingyun
    Zhu, Jian
    Yan, Xingbin
    ENERGY STORAGE MATERIALS, 2024, 73
  • [3] A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries (vol 2, pg 2005, 2017)
    Kuhnel, Ruben-Simon
    Reber, David
    Battaglia, Corsin
    ACS ENERGY LETTERS, 2020, 5 (02): : 346 - 346
  • [4] Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries
    You, Ya
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2018, 8 (02)
  • [5] Low-solvation electrolytes for high-voltage sodium-ion batteries
    Yan Jin
    Phung M. L. Le
    Peiyuan Gao
    Yaobin Xu
    Biwei Xiao
    Mark H. Engelhard
    Xia Cao
    Thanh D. Vo
    Jiangtao Hu
    Lirong Zhong
    Bethany E. Matthews
    Ran Yi
    Chongmin Wang
    Xiaolin Li
    Jun Liu
    Ji-Guang Zhang
    Nature Energy, 2022, 7 : 718 - 725
  • [6] Low-solvation electrolytes for high-voltage sodium-ion batteries
    Jin, Yan
    Le, Phung M. L.
    Gao, Peiyuan
    Xu, Yaobin
    Xiao, Biwei
    Engelhard, Mark H.
    Cao, Xia
    Vo, Thanh D.
    Hu, Jiangtao
    Zhong, Lirong
    Matthews, Bethany E.
    Yi, Ran
    Wang, Chongmin
    Li, Xiaolin
    Liu, Jun
    Zhang, Ji-Guang
    NATURE ENERGY, 2022, 7 (08) : 718 - 725
  • [7] Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries
    Hou, Zhiguo
    Zhang, Xueqian
    Ao, Huaisheng
    Liu, Mengke
    Zhu, Yongchun
    Qian, Yitai
    MATERIALS TODAY ENERGY, 2019, 14
  • [8] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Qidi Wang
    Dong Zhou
    Chenglong Zhao
    Jianlin Wang
    Hao Guo
    Liguang Wang
    Zhenpeng Yao
    Deniz Wong
    Götz Schuck
    Xuedong Bai
    Jun Lu
    Marnix Wagemaker
    Nature Sustainability, 2024, 7 : 338 - 347
  • [9] A High-Voltage Cathode Material with Ultralong Cycle Performance for Sodium-Ion Batteries
    Li, Jiaqi
    Liang, Zixin
    Jin, Yuqin
    Yu, Binkai
    Wang, Ting
    Wang, Tong
    Zhou, Limin
    Xia, Hui
    Zhang, Kai
    Chen, Mingzhe
    SMALL METHODS, 2024, 8 (10)
  • [10] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Wang, Qidi
    Zhou, Dong
    Zhao, Chenglong
    Wang, Jianlin
    Guo, Hao
    Wang, Liguang
    Yao, Zhenpeng
    Wong, Deniz
    Schuck, Goetz
    Bai, Xuedong
    Lu, Jun
    Wagemaker, Marnix
    NATURE SUSTAINABILITY, 2024, 7 (03) : 338 - 347