Enhanced osmotic transport in individual double-walled carbon nanotube

被引:45
作者
Cui, Guandong [1 ,2 ]
Xu, Zhi [1 ,2 ]
Li, Han [1 ,2 ]
Zhang, Shuchen [3 ]
Xu, Luping [2 ,4 ]
Siria, Alessandro [5 ]
Ma, Ming [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol Adv Equipment, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[3] Peking Univ, Beijing Sci & Engn Ctr Nanocarbons, Coll Chem & Mol Engn,Beijing Natl Lab Mol Sci, Key Lab Phys & Chem Nanodevices,Ctr Nanochem, Beijing 100871, Peoples R China
[4] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
[5] Univ Paris, Univ PSL, Sorbonne Univ, CNRS,Lab Phys Ecole Normale Superieure, Paris, France
关键词
PROTON TRANSPORT; WATER TRANSPORT; MASS-TRANSPORT; 2D MATERIALS; GRAPHENE; FLOW;
D O I
10.1038/s41467-023-37970-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transport of fluid and ions across nanotubes or nanochannels has attracted great attention due to the ultrahigh energy power density and slip length, with applications in water purification, desalination, energy conversion and even ion-based neuromorphic computing. Investigation on individual nanotube or nanochannel is essential in revealing the fundamental mechanism as well as demonstrating the property unambiguously. Surprisingly, while carbon nanotube is the pioneering and one of the most attractive systems for nanofluidics, study on its response and performance under osmotic forcing is lacking. Here, we measure the osmotic energy conversion for individual double-walled carbon nanotube with an inner radius of 2.3nm. By fabricating a nanofluidic device using photolithography, we find a giant power density (up to 22.5kW/m(2)) for the transport of KCl, NaCl, and LiCl solutions across the tube. Further experiments show that such an extraordinary performance originates from the ultrahigh slip lengths (up to a few micrometers). Our results suggest that carbon nanotube is a good candidate for not only ultrafast transport, but also osmotic power harvesting under salinity gradients.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels [J].
Amiri, Hasti ;
Shepard, Kenneth L. ;
Nuckolls, Colin ;
Sanchez, Raul Hernandez .
NANO LETTERS, 2017, 17 (02) :1204-1211
[2]   Nanofluidics is on the rise [J].
不详 .
NATURE MATERIALS, 2020, 19 (03) :253-253
[3]   Nanofluidics coming of age [J].
Bocquet, Lyderic .
NATURE MATERIALS, 2020, 19 (03) :254-256
[4]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[5]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[6]   Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle [J].
Carr, Stephen ;
Massatt, Daniel ;
Fang, Shiang ;
Cazeaux, Paul ;
Luskin, Mitchell ;
Kaxiras, Efthimios .
PHYSICAL REVIEW B, 2017, 95 (07)
[7]   Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes [J].
Choi, Wonjoon ;
Ulissi, Zachary W. ;
Shimizu, Steven F. E. ;
Bellisario, Darin O. ;
Ellison, Mark D. ;
Strano, Michael S. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Saito, R. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :89-108
[9]   Enhanced nanofluidic transport in activated carbon nanoconduits [J].
Emmerich, Theo ;
Vasu, Kalangi S. ;
Nigues, Antoine ;
Keerthi, Ashok ;
Radha, Boya ;
Siria, Alessandro ;
Bocquet, Lyderic .
NATURE MATERIALS, 2022, 21 (06) :696-+
[10]   Size effect in ion transport through angstrom-scale slits [J].
Esfandiar, A. ;
Radha, B. ;
Wang, F. C. ;
Yang, Q. ;
Hu, S. ;
Garaj, S. ;
Nair, R. R. ;
Geim, A. K. ;
Gopinadhan, K. .
SCIENCE, 2017, 358 (6362) :511-513