Deep learning for enhanced free-space optical communications

被引:5
作者
Bart, M. P. [1 ,4 ]
Savino, N. J. [1 ]
Regmi, P. [2 ]
Cohen, L. [3 ]
Safavi, H. [4 ]
Shaw, H. C. [4 ]
Lohani, S. [5 ]
Searles, T. A. [5 ]
Kirby, B. T. [1 ,6 ]
Lee, H. [2 ]
Glasser, R. T. [1 ]
机构
[1] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Univ Colorado Boulder, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[6] DEVCOM Army Res Lab, Adelphi, MD 20783 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 04期
基金
美国国家科学基金会;
关键词
optical communication; free space communication; deep learning; convolutional neural networks; TURBULENCE COMPENSATION; PROPAGATION; SYSTEM;
D O I
10.1088/2632-2153/ad10cd
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atmospheric effects, such as turbulence and background thermal noise, inhibit the propagation of light used in ON-OFF keying (OOK) free-space optical (FSO) communication. Here we present and experimentally validate a convolutional neural network (CNN) to reduce the bit error rate of FSO communication in post-processing that is significantly simpler and cheaper than existing solutions based on advanced optics. Our approach consists of two neural networks, the first determining the presence of bit sequences in thermal noise and turbulence and the second demodulating the bit sequences. All data used for training and testing our network is obtained experimentally by generating OOK bit streams, combining these with thermal light, and passing the resultant light through a turbulent water tank which we have verified mimics turbulence in the air to a high degree of accuracy. Our CNN improves detection accuracy over threshold classification schemes and has the capability to be integrated with current demodulation and error correction schemes.
引用
收藏
页数:10
相关论文
共 51 条
[21]   Advanced multi-feedback stochastic parallel gradient descent wavefront correction in free-space optical communication [J].
Li, Zhaokun ;
Shang, Tao ;
Liu, Xiongchao ;
Qian, Peiheng ;
Zhang, Yinling .
OPTICS COMMUNICATIONS, 2023, 533
[22]   Two-step system for image receiving in OAM-SK-FSO link [J].
Li, Zhaokun ;
Su, Jianbo ;
Zhao, Xiaohui .
OPTICS EXPRESS, 2020, 28 (21) :30520-30541
[23]   Atmospheric turbulence compensation with sensorless AO in OAM-FSO combining the deep learning-based demodulator [J].
Li, Zhaokun ;
Su, Jianbo ;
Zhao, Xiaohui .
OPTICS COMMUNICATIONS, 2020, 460
[24]   Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication [J].
Liu, Junmin ;
Wang, Peipei ;
Zhang, Xiaoke ;
He, Yanliang ;
Zhou, Xinxing ;
Ye, Huapeng ;
Li, Ying ;
Xu, Shixiang ;
Chen, Shuqing ;
Fan, Dianyuan .
OPTICS EXPRESS, 2019, 27 (12) :16671-16688
[25]   Coherent optical communications enhanced by machine intelligence [J].
Lohani, Sanjaya ;
Glasser, Ryan T. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03)
[26]   Generative machine learning for robust free-space communication [J].
Lohani, Sanjaya ;
Knutson, Erin M. ;
Glasser, Ryan T. .
COMMUNICATIONS PHYSICS, 2020, 3 (01)
[27]   Turbulence correction with artificial neural networks [J].
Lohani, Sanjaya ;
Glasser, Ryan T. .
OPTICS LETTERS, 2018, 43 (11) :2611-2614
[28]   On the use of deep neural networks in optical communications [J].
Lohani, Sanjaya ;
Knutson, Erin M. ;
O'Donnell, Matthew ;
Huver, Sean D. ;
Glasser, Ryan T. .
APPLIED OPTICS, 2018, 57 (15) :4180-4190
[29]   768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks [J].
Luan, Haitao ;
Lin, Dajun ;
Li, Keyao ;
Meng, Weijia ;
Gu, Min ;
Fang, Xinyuan .
OPTICS EXPRESS, 2021, 29 (13) :19807-19818
[30]   Overview and Status of the Laser Communication Relay Demonstration [J].
Luzhansky, E. ;
Edwards, B. ;
Israel, D. ;
Cornwell, D. ;
Staren, J. ;
Cummings, N. ;
Roberts, T. ;
Patschke, R. .
FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVIII, 2016, 9739