Deep learning for enhanced free-space optical communications

被引:5
作者
Bart, M. P. [1 ,4 ]
Savino, N. J. [1 ]
Regmi, P. [2 ]
Cohen, L. [3 ]
Safavi, H. [4 ]
Shaw, H. C. [4 ]
Lohani, S. [5 ]
Searles, T. A. [5 ]
Kirby, B. T. [1 ,6 ]
Lee, H. [2 ]
Glasser, R. T. [1 ]
机构
[1] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Univ Colorado Boulder, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[6] DEVCOM Army Res Lab, Adelphi, MD 20783 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 04期
基金
美国国家科学基金会;
关键词
optical communication; free space communication; deep learning; convolutional neural networks; TURBULENCE COMPENSATION; PROPAGATION; SYSTEM;
D O I
10.1088/2632-2153/ad10cd
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atmospheric effects, such as turbulence and background thermal noise, inhibit the propagation of light used in ON-OFF keying (OOK) free-space optical (FSO) communication. Here we present and experimentally validate a convolutional neural network (CNN) to reduce the bit error rate of FSO communication in post-processing that is significantly simpler and cheaper than existing solutions based on advanced optics. Our approach consists of two neural networks, the first determining the presence of bit sequences in thermal noise and turbulence and the second demodulating the bit sequences. All data used for training and testing our network is obtained experimentally by generating OOK bit streams, combining these with thermal light, and passing the resultant light through a turbulent water tank which we have verified mimics turbulence in the air to a high degree of accuracy. Our CNN improves detection accuracy over threshold classification schemes and has the capability to be integrated with current demodulation and error correction schemes.
引用
收藏
页数:10
相关论文
共 51 条
[1]   A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction [J].
Abu Jahid ;
Alsharif, Mohammed H. ;
Hall, Trevor J. .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 200
[2]  
Andrews L.C., 2001, Laser beam scintillation with applications, P67, DOI DOI 10.1117/3.412858
[3]  
Aspelmeyer M, 2003, IEEE J SEL TOP QUANT, V9, P1541, DOI [10.1109/JSTQE.2003.820918, 10.1109/jstqe.2003.820918]
[4]   Expressing oceanic turbulence parameters by atmospheric turbulence structure constant [J].
Baykal, Yahya .
APPLIED OPTICS, 2016, 55 (06) :1228-1231
[5]   Progress in satellite quantum key distribution [J].
Bedington, Robert ;
Arrazola, Juan Miguel ;
Ling, Alexander .
NPJ QUANTUM INFORMATION, 2017, 3
[6]   Overview and Results of the Lunar Laser Communication Demonstration [J].
Boroson, Don M. ;
Robinson, Bryan S. ;
Murphy, Daniel V. ;
Burianek, Dennis A. ;
Khatri, Farzana ;
Kovalik, Joseph M. ;
Sodnik, Zoran ;
Cornwell, Donald M. .
FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVI, 2014, 8971
[7]   Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication [J].
Cao, Jingtai ;
Zhao, Xiaohui ;
Li, Zhaokun ;
Liu, Wei ;
Song, Yang .
OPTIK, 2014, 125 (20) :6142-6147
[8]   Experimental Investigation of Environment Effects on the FSO Link With Turbulence [J].
Chaleshtory, Zahra Nazari ;
Gholami, Asghar ;
Ghassemlooy, Zabih ;
Sedghi, Mohammad .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (17) :1435-1438
[9]  
Chen W, 2017, ASIA COMMUN PHOTON
[10]   OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN) [J].
Dedo, Maxime Irene ;
Wang, Zikun ;
Guo, Kai ;
Guo, Zhongyi .
OPTICS COMMUNICATIONS, 2020, 456