MSAANet: Multi-scale Axial Attention Network for medical image segmentation

被引:5
作者
Zeng, Hao [1 ]
Shan, Xinxin [1 ]
Feng, Yu [1 ]
Wen, Ying [1 ]
机构
[1] East China Normal Univ, Sch Commun & Elect Engn, Shanghai, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME | 2023年
关键词
Image segmentation; Attention mechanism; Transformer; CNN; Multi-scale feature information; TRANSFORMER;
D O I
10.1109/ICME55011.2023.00391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
U-Net and its variants have achieved impressive results in medical image segmentation. However, the downsampling operation of such U-shaped networks causes the feature maps to lose a certain degree of spatial information, and most existing methods use convolution and transformer sequentially, it is hard to extract more comprehensive feature representation of the image. In this paper, we propose a novel U-shaped segmentation network named Multi-scale Axial Attention Network (MSAANet) to solve the above problems. Specifically, we propose a cross-scale interactive attention: multi-scale axial attention (MSAA), which achieves direction-perception attention of different scales interaction. So that the downsampling deep features and the shallow features can maintain context spatial consistency. Besides, we propose a Convolution-Transformer (CT) block, which makes transformer and convolution complement each other to enhance comprehensive feature representation. We evaluate the proposed method on the public datasets Synapse and ACDC. Experimental results demonstrate that MSAANet effectively improves segmentation accuracy.
引用
收藏
页码:2291 / 2296
页数:6
相关论文
共 18 条
[1]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[2]  
Chen J., 2021, arXiv
[3]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]  
Hong L., 2021, 2021 IEEE INT C MULT, P1, DOI [DOI 10.1109/ICME51207.2021.9428427, 10.1109/ICME51207.2021.9428427]
[6]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[7]  
Huang HM, 2020, INT CONF ACOUST SPEE, P1055, DOI [10.1109/icassp40776.2020.9053405, 10.1109/ICASSP40776.2020.9053405]
[8]  
Huang X., 2021, arXiv
[9]   TrSeg: Transformer for semantic segmentation [J].
Jin, Youngsaeng ;
Han, David ;
Ko, Hanseok .
PATTERN RECOGNITION LETTERS, 2021, 148 :29-35
[10]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002