Interfacial coupling of MoS2/MoO3 hierarchical heterostructures as superior anodes for high-performance lithium-ion battery

被引:20
作者
Zhao, Chunyan [1 ]
Fu, Jinwen [1 ]
Shen, Ao [1 ]
Zhang, Lingsheng [1 ]
Kong, Shuo [1 ]
Feng, Yongbao [1 ]
Gong, Wenbin [2 ,3 ,4 ]
Tian, Konghu [5 ]
Li, Qiulong [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
[2] Xuzhou Univ Technol, Sch Phys & Energy, Xuzhou 221018, Peoples R China
[3] Jiangxi Inst Nanotechnol, Div Nanomat, Nanchang 330200, Peoples R China
[4] Jiangxi Inst Nanotechnol, Jiangxi Key Lab Carbonene Mat, Nanchang 330200, Peoples R China
[5] Anhui Univ Sci & Technol, Analyt & Testing Ctr, Huainan 232001, Peoples R China
关键词
Anode materials; MoS2/MoO3; Heterostructure; Interfacial coupling; Lithium-ion storage; MOS2; GRAPHENE; KINETICS;
D O I
10.1016/j.est.2023.108595
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Molybdenum disulfide (MoS2), an outstanding two-dimensional (2D) structural block, is considered as a hopeful candidate for the lithium-ion batteries (LIBs) anode. However, the stacked and breakable 2D layered structure restricts its rate and cycling performance. Herein, a novel architecture of spherical nanoflower MoS2/MoO3 heterostructures is rationally designed for LIBs. The hierarchical nanoflower morphology guarantees the structural superiority to buffer the volume expansion and the construction of heterostructures increases the adsorption energy of Li ions. Theoretical researches demonstrate that the formation of built-in electric field between MoS2 and MoO3 significantly enhances the interfacial electron transport and the ion diffusion rate, which can be conducive to accelerate Li+ insertion/extraction in designed heterostructures. As expected, the ultrahigh capacity (864.4 mAh g+1 at 0.1 A g+1) and high-rate capability (353.4 mAh g+1 at 2.0 A g+1) are acquired in the LIBs composed of as-prepared MoS2/MoO3 anodes. More importantly, MoS2/MoO3 anode shows a high reversible capacity of 509.3 mAh g+1 after 100 cycles at 0.2 A g+1, which also exhibits outstanding cycling performance with the capacity of 335.9 mAh g+1 after 3000 cycles at 2.0 A g+1. This study provides a new paradigm for promoting LIBs performance by constructing heterostructures.
引用
收藏
页数:9
相关论文
共 65 条
[51]   Scaffold-regulation buffered MoS2 anode kinetics for high-performance Na-/K-ion storage [J].
Xiong, Tuzhi ;
Yao, Xincheng ;
Adekoya, David ;
Yang, Hao ;
Balogun, M. -Sadeeq .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 145 :14-24
[52]   One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors [J].
Yang, Bingjun ;
Chen, Jiangtao ;
Liu, Bao ;
Ding, Yunxia ;
Tang, Yu ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (10) :6352-6360
[53]   Porous 3D Silicon-Diamondyne Blooms Excellent Storage and Diffusion Properties for Li, Na, and K Ions [J].
Yang, Ze ;
Song, Yuwei ;
Zhang, Chunfang ;
He, Jianjiang ;
Li, Xiaodong ;
Wang, Xin ;
Wang, Ning ;
Li, Yuliang ;
Huang, Changshui .
ADVANCED ENERGY MATERIALS, 2021, 11 (33)
[54]   MXene-Bonded hollow MoS2/Carbon sphere strategy for high-performance flexible sodium ion storage [J].
Yuan, Zeyu ;
Cao, Junming ;
Valerii, Shulga ;
Xu, Hao ;
Wang, Lili ;
Han, Wei .
CHEMICAL ENGINEERING JOURNAL, 2022, 430
[55]   Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries [J].
Yuan, Zeyu ;
Wang, Lili ;
Li, DongDong ;
Cao, Junming ;
Han, Wei .
ACS NANO, 2021, 15 (04) :7439-7450
[56]   An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage [J].
Zhang, Hanning ;
Chen, Pengyu ;
Xia, Huan ;
Xu, Gang ;
Wang, Yaping ;
Zhang, Tengfei ;
Sun, Wenwen ;
Turgunov, Muhammadali ;
Zhang, Wei ;
Sun, ZhengMing .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) :5240-5250
[57]   Interlayer-Expanded MoS2 Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO2 as High-Performance Anode for Sodium-Ion Batteries [J].
Zhang, Hongwei ;
Song, Jianjun ;
Li, Jiayi ;
Feng, Junan ;
Ma, Yanyan ;
Ma, Linlin ;
Liu, Hao ;
Qin, Yuanbin ;
Zhao, Xiaoxian ;
Wang, Fengyun .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) :16300-16309
[58]   Core-Shell CoSe2/WSe2 Heterostructures@Carbon in Porous Carbon Nanosheets as Advanced Anode for Sodium Ion Batteries [J].
Zhang, Shengqiang ;
Sun, Lili ;
Yu, Le ;
Zhai, Gaohong ;
Li, Lixiang ;
Liu, Xiaojie ;
Wang, Hui .
SMALL, 2021, 17 (49)
[59]   High-Capacity and Kinetically Accelerated Lithium Storage in MoO3 Enabled by Oxygen Vacancies and Heterostructure [J].
Zhang, Yingying ;
Chen, Peng ;
Wang, Qingyu ;
Wang, Qian ;
Zhu, Kai ;
Ye, Ke ;
Wang, Guiling ;
Cao, Dianxue ;
Yan, Jun ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2021, 11 (31)
[60]   Construction of Ru, O Co-Doping MoS2 for Hydrogen Evolution Reaction Electrocatalyst and Surface-Enhanced Raman Scattering Substrate: High-Performance, Recyclable, and Durability Improvement [J].
Zhang, Yuchen ;
Yang, Tingru ;
Li, Jia ;
Zhang, Qi ;
Li, Baizhi ;
Gao, Ming .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (03)