A Siamese Network with a Multiscale Window-Based Transformer via an Adaptive Fusion Strategy for High-Resolution Remote Sensing Image Change Detection

被引:1
|
作者
Tao, Chao [1 ]
Kuang, Dongsheng [1 ]
Wu, Kai [2 ]
Zhao, Xiaomei [3 ]
Zhao, Chunyan [3 ]
Du, Xin [2 ]
Zhang, Yunsheng [1 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Inner Mongolia Big Data Ctr, Hohhot 010000, Peoples R China
[3] Inner Mongolia Mil Civilian Integrat Dev Res Ctr, Hohhot 010000, Peoples R China
基金
中国国家自然科学基金;
关键词
change detection (CD); remote sensing (RS); small object; scale differences; transformer; URBAN;
D O I
10.3390/rs15092433
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing image change detection (RS-CD) has made impressive progress with the help of deep learning techniques. Small object change detection (SoCD) still faces many challenges. On the one hand, when the scale of changing objects varies greatly, deep learning models with overall accuracy as the optimization goal tend to focus on large object changes and ignore small object changes to some extent. On the other hand, the RS-CD model based on deep convolutional networks needs to perform multiple spatial pooling operations on the feature map to obtain deep semantic features, which leads to the loss of small object feature-level information in the local space. Therefore, we propose a Siamese transformer change detection network with a multiscale window via an adaptive fusion strategy (SWaF-Trans). To solve the problem of ignoring small object changes, we compute self-attention in windows of different scales to model changing objects at the corresponding scales and establish semantic information links through a moving window mechanism to capture more comprehensive small object features in small-scale windows, thereby enhancing the feature representation of multiscale objects. To fuse multiscale features and alleviate the problem of small object feature information loss, we propose a channel-related fusion mechanism to model the global correlation between channels for display and adaptively adjust the fusion weights of channels to enable the network to capture more discriminative features of interest and reduce small object feature information loss. Experiments on the CDD and WHU-CD datasets show that SWaF-Trans exceeds eight advanced baseline methods, with absolute F1 scores as high as 97.10% and 93.90%, achieving maximum increases of 2% and 5.6%, respectively, compared to the baseline methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multiscale Fusion CNN-Transformer Network for High-Resolution Remote Sensing Image Change Detection
    Jiang, Ming
    Chen, Yimin
    Dong, Zhe
    Liu, Xiaoping
    Zhang, Xinchang
    Zhang, Honghui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5280 - 5293
  • [2] A Siamese Multiscale Attention Decoding Network for Building Change Detection on High-Resolution Remote Sensing Images
    Chen, Yao
    Zhang, Jindou
    Shao, Zhenfeng
    Huang, Xiao
    Ding, Qing
    Li, Xianyi
    Huang, Youju
    REMOTE SENSING, 2023, 15 (21)
  • [3] High resolution representation-based Siamese network for remote sensing image change detection
    Liang, Zheng
    Zhu, Bin
    Zhu, Yaoxuan
    IET IMAGE PROCESSING, 2022, 16 (09) : 2506 - 2517
  • [4] Adaptive Differentiation Siamese Fusion Network for Remote Sensing Change Detection
    Zhang, Yunzuo
    Zhen, Jiawen
    Liu, Ting
    Yang, Yuehui
    Cheng, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [5] Change Detection for High-resolution Remote Sensing Images Based on a UNet-like Siamese-structured Transformer Network
    Liang, Chen
    Chen, Pinxiang
    Liu, Huiping
    Zhu, Xiaokun
    Geng, Yuanhao
    Zhang, Zhenwei
    SENSORS AND MATERIALS, 2023, 35 (01) : 183 - 198
  • [6] A CBAM Based Multiscale Transformer Fusion Approach for Remote Sensing Image Change Detection
    Wang, Wei
    Tan, Xinai
    Zhang, Peng
    Wang, Xin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6817 - 6825
  • [7] Remote Sensing Image Change Detection Based on Lightweight Transformer and Multiscale Feature Fusion
    Li, Jingming
    Zheng, Panpan
    Wang, Liejun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5460 - 5473
  • [8] Multi-Scale Fusion Siamese Network Based on Three-Branch Attention Mechanism for High-Resolution Remote Sensing Image Change Detection
    Li, Yan
    Weng, Liguo
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    REMOTE SENSING, 2024, 16 (10)
  • [9] An attention-based multiscale transformer network for remote sensing image change detection
    Liu, Wei
    Lin, Yiyuan
    Liu, Weijia
    Yu, Yongtao
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 599 - 609
  • [10] A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection
    Li, Xinghua
    He, Meizhen
    Li, Huifang
    Shen, Huanfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19