Multi-mode architectures for noise-resilient superconducting qubits

被引:13
|
作者
Calzona, Alessio [1 ]
Carrega, Matteo [2 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[2] CNR SPIN, Via Dodecaneso 33, I-16146 Genoa, Italy
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2023年 / 36卷 / 02期
关键词
superconducting qubits; noise protection; quantum computing architectures; multi-mode superconducting circuits; QUANTUM COMPUTATION; STATE; CIRCUITS; RELAXATION;
D O I
10.1088/1361-6668/acaa64
中图分类号
O59 [应用物理学];
学科分类号
摘要
Great interest revolves around the development of new strategies to efficiently store and manipulate quantum information in a robust and decoherence-free fashion. Several proposals have been put forward to encode information into qubits that are simultaneously insensitive to relaxation and to dephasing processes. Among all, given their versatility and high-degree of control, superconducting qubits have been largely investigated in this direction. Here, we present a survey on the basic concepts and ideas behind the implementation of novel superconducting circuits with intrinsic protection against decoherence at a hardware level. In particular, the main focus is on multi-mode superconducting circuits, the paradigmatic example being the so-called 0-pi circuit. We report on their working principle and possible physical implementations based on conventional Josephson elements, presenting recent experimental realizations, discussing both fabrication methods and characterizations.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Noise-resilient edge modes on a chain of superconducting qubits
    Mi, X.
    Sonner, M.
    Niu, M. Y.
    Lee, K. W.
    Foxen, B.
    Acharya, R.
    Aleiner, I.
    Andersen, T. I.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Bardin, J. C.
    Basso, J.
    Bengtsson, A.
    Bortoli, G.
    Bourassa, A.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burkett, B.
    Bushnell, N.
    Chen, Z.
    Chiaro, B.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Debroy, D. M.
    Demura, S.
    Dunsworth, A.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fatemi, R.
    Flores, L.
    Forati, E.
    Fowler, A. G.
    Giang, W.
    Gidney, C.
    Gilboa, D.
    Giustina, M.
    Dau, A. G.
    Gross, J. A.
    Habegger, S.
    Harrigan, M. P.
    Hoffmann, M.
    Hong, S.
    SCIENCE, 2022, 378 (6621) : 785 - 790
  • [2] Noise-resilient quantum power flow
    Feng, Fei
    Zhou, Yi-Fan
    Zhang, Peng
    iEnergy, 2023, 2 (01): : 63 - 70
  • [3] Noise-resilient Synchrony of AC Microgrids
    Abhinav, Shankar
    Schizas, Ioannis D.
    Davoudi, Ali
    2015 RESILIENCE WEEK (RSW), 2015, : 56 - 61
  • [4] System architectures in multi-mode mobile terminals
    Wenzel, Dietmar
    2007 EUROPEAN CONFERENCE ON WIRELESS TECHNOLOGIES, 2007, : 36 - 39
  • [5] Multi-Mode Unrolled Architectures for Polar Decoders
    Giard, Pascal
    Sarkis, Gabi
    Thibeault, Claude
    Gross, Warren J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (09) : 1443 - 1453
  • [6] Noise-Resilient and Interpretable Epileptic Seizure Detection
    Thomas, Anthony Hitchcock
    Aminifar, Amir
    Atienza, David
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [7] Noise-Resilient Phase Estimation with Randomized Compiling
    Gu, Yanwu
    Ma, Yunheng
    Forcellini, Nicole
    Liu, Dong E.
    PHYSICAL REVIEW LETTERS, 2023, 130 (25)
  • [8] Noise-resilient group testing: Limitations and constructions
    Cheraghchi, Mahdi
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 81 - 95
  • [9] A noise-resilient equalization algorithm for OFDM systems
    Ge, QH
    Lu, JH
    Mei, SL
    5TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2002, : 1314 - 1317
  • [10] Multi-mode Systems for Resilient Security in Industry 4.0
    Riegler, Michael
    Sametinger, Johannes
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2020), 2021, 180 : 301 - 307