Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine neoplasms (PanNENs) based on CT radiomic features

被引:19
作者
Mori, Martina [1 ]
Palumbo, Diego [2 ,3 ]
Muffatti, Francesca [4 ]
Partelli, Stefano [3 ,4 ]
Mushtaq, Junaid [2 ,3 ]
Andreasi, Valentina [3 ,4 ]
Prato, Francesco [2 ,3 ]
Ubeira, Maria Giulia [1 ]
Palazzo, Gabriele [1 ]
Falconi, Massimo [3 ,4 ]
Fiorino, Claudio [1 ]
De Cobelli, Francesco [2 ,3 ]
机构
[1] Ist Sci San Raffaele, Med Phys, Milan, Italy
[2] Ist Sci San Raffaele, Radiol Unit, Via Olgettina 60, I-20132 Milan, Italy
[3] Univ Vita Salute San Raffaele, Milan, Italy
[4] Ist Sci San Raffaele, Pancreat Surg Unit, Milan, Italy
关键词
Pancreatic neoplasm; Neuroendocrine tumors; Computer tomography; Radiomics; Predictive models; ENETS CONSENSUS GUIDELINES; CANCER; CLASSIFICATION; STANDARDS; DIAGNOSIS; IMAGES; TUMORS; CARE;
D O I
10.1007/s00330-022-09351-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To predict tumor grade (G1 vs. G2/3), presence of distant metastasis (M+), metastatic lymph nodes (N+), and microvascular invasion (VI) of pancreatic neuroendocrine neoplasms (PanNEN) based on preoperative CT radiomic features (RFs), by applying a machine learning approach aimed to limit overfit. Methods This retrospective study included 101 patients who underwent surgery for PanNEN; the entire population was split into training (n = 70) and validation cohort (n = 31). Based on a previously validated methodology, after tumor segmentation on contrast-enhanced CT, RFs were extracted from unenhanced CT images. In addition, conventional radiological and clinical features were combined with RFs into multivariate logistic regression models using minimum redundancy and a bootstrap-based machine learning approach. For each endpoint, models were trained and validated including only RFs (RF_model), and both (radiomic and clinicoradiological) features (COMB_model). Results Twenty-five patients had G2/G3 tumor, 37 N+, and 14 M+ and 38 were shown to have VI. From a total of 182 RFs initially extracted, few independent radiomic and clinicoradiological features were identified. For M+ and G, the resulting models showed moderate to high performances: areas under the curve (AUC) for training/validation cohorts were 0.85/0.77 (RF_model) and 0.81/0.81 (COMB_model) for M+ and 0.67/0.72 and 0.68/0.70 for G. Concerning N+ and VI, only the COMB_model could be built, with poorer performance for N+ (AUC = 0.72/0.61) compared to VI (0.82/0.75). For all endpoints, the negative predictive value was good (>= 0.75). Conclusions Combining few radiomic and clinicoradiological features resulted in presurgical prediction of histological characteristics of PanNENs. Despite the limited risk of overfit, external validations are warranted.
引用
收藏
页码:4412 / 4421
页数:10
相关论文
共 53 条
[1]   Investigating multi-radiomic models for enhancing prediction power of cervical cancer treatment outcomes [J].
Altazi, Baderaldeen A. ;
Fernandez, Daniel C. ;
Zhang, Geoffrey G. ;
Hawkins, Samuel ;
Naqvi, Syeda M. ;
Kim, Youngchul ;
Hunt, Dylan ;
Latifi, Kujtim ;
Biagioli, Matthew ;
Venkata, Puja ;
Moros, Eduardo G. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 46 :180-188
[2]   Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research [J].
Apte, Aditya P. ;
Iyer, Aditi ;
Crispin-Ortuzar, Mireia ;
Pandya, Rutu ;
van Dijk, Lisanne V. ;
Spezi, Emiliano ;
Thor, Maria ;
Um, Hyemin ;
Veeraraghavan, Harini ;
Oh, Jung Hun ;
Shukla-Dave, Amita ;
Deasy, Joseph O. .
MEDICAL PHYSICS, 2018, 45 (08) :3713-3720
[3]   Preoperative assessment of microvessel density in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs) [J].
Battistella, Anna ;
Partelli, Stefano ;
Andreasi, Valentina ;
Marinoni, Ilaria ;
Palumbo, Diego ;
Tacelli, Matteo ;
Lena, Marco Schiavo ;
Muffatti, Francesca ;
Mushtaq, Junaid ;
Capurso, Gabriele ;
Arcidiacono, Paolo Giorgio ;
De Cobelli, Francesco ;
Doglioni, Claudio ;
Perren, Aurel ;
Falconi, Massimo .
SURGERY, 2022, 172 (04) :1236-1244
[4]   CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors [J].
Benedetti, Giulia ;
Mori, Martina ;
Panzeri, Marta Maria ;
Barbera, Maurizio ;
Palumbo, Diego ;
Sini, Carla ;
Muffatti, Francesca ;
Andreasi, Valentina ;
Steidler, Stephanie ;
Doglioni, Claudio ;
Partelli, Stefano ;
Manzoni, Marco ;
Falconi, Massimo ;
Fiorino, Claudio ;
De Cobelli, Francesco .
RADIOLOGIA MEDICA, 2021, 126 (06) :745-760
[5]   Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance [J].
Bezzi, C. ;
Mapelli, P. ;
Presotto, L. ;
Neri, I ;
Scifo, P. ;
Savi, A. ;
Bettinardi, V ;
Partelli, S. ;
Gianolli, L. ;
Falconi, M. ;
Picchio, M. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (12) :4002-4015
[6]   CT-Based Radiomics Score for Distinguishing Between Grade I and Grade 2 Nonfunctioning Pancreatic Neuroendocrine Tumors [J].
Bian, Yun ;
Jiang, Hui ;
Ma, Chao ;
Wang, Li ;
Zheng, Jianming ;
Jin, Gang ;
Lu, Jianping .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (04) :852-863
[7]   Noncontrast Radiomics Approach for Predicting Grades of Nonfunctional Pancreatic Neuroendocrine Tumors [J].
Bian, Yun ;
Zhao, Zengrui ;
Jiang, Hui ;
Fang, Xu ;
Li, Jing ;
Cao, Kai ;
Ma, Chao ;
Guo, Shiwei ;
Wang, Li ;
Jin, Gang ;
Lu, Jianping ;
Xu, Jun .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (04) :1124-1136
[8]   Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis [J].
Canellas, Rodrigo ;
Burk, Kristine S. ;
Parakh, Anushri ;
Sahani, Dushyant V. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) :341-346
[9]   Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis [J].
Choi, Tae Won ;
Kim, Jung Hoon ;
Yu, Mi Hye ;
Park, Sang Joon ;
Han, Joon Koo .
ACTA RADIOLOGICA, 2018, 59 (04) :383-392
[10]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1111/eci.12376, 10.7326/M14-0697, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639]