A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors

被引:78
|
作者
Nie, Zhen [1 ]
Peng, Kelin [1 ,2 ]
Lin, Lizhi [1 ]
Yang, Jueying [1 ]
Cheng, Zhekun [1 ]
Gan, Qiang [1 ]
Chen, Yu [1 ,2 ]
Feng, Changgen [1 ,2 ]
机构
[1] Beijing Inst Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
关键词
Agar; Borate bond; MXene; Conductive hydrogel; Flexible sensor; STRAIN SENSORS; TOUGH; PRESSURE;
D O I
10.1016/j.cej.2022.139843
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conductive hydrogels (CHs) have drawn wide attention from the field of flexible sensor for their similarities to tissues, excellent flexibility and good electrical conductivity. However, most of the reported hydrogel-based flexible sensors display the disadvantages of poor tensile strength, low sensitivity and insufficient stability, and most of them are prepared with non-degradable synthetic polymers, which have greatly limited their application. To solve these problems, in this work, we have constructed an agar-based dynamic double cross -linked CH by the dynamic crosslinking between agar and borax via borate bonds and the hydrogen bonds be-tween agar chains. The CH exhibits excellent electrical conductivities, tensile properties and self-healing abilities. A novel two-dimensional material, MXene nanosheet, was introduced to further improve the mechanical prop-erties and ionic conductivity of the CH with its high ionic conductivity and ability to form hydrogen bonds with agar. The obtained Agar/Borax/MXene CH displays the excellent strength and elongation of 129 kPa and 105.1 % and the satisfying ionic conductivity of 8.14 x 10-2 S/cm. The flexible sensor assembled with Agar/Borax hydrogel with 0.15 wt% MXene exhibits a wide strain detection range from 0 to 100 %, high sensitivity (GF approximate to 1.520) and good stability. Our work has provided a novel strategy for the construction of green flexible sensors with good mechanical properties and high sensitivity.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
    Su, Gehong
    Yin, Shuya
    Guo, Youhong
    Zhao, Fei
    Guo, Quanquan
    Zhang, Xinxing
    Zhou, Tao
    Yu, Guihua
    MATERIALS HORIZONS, 2021, 8 (06) : 1795 - 1804
  • [42] Highly Flexible and Self-Healing Supercapacitor Enabled by Physically Crosslinking Polymer Hydrogel Electrolyte
    Hua, Kaihao
    Xin, Qing
    Lin, Jun
    Liang, Shangqing
    Yang, Guoqing
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (68)
  • [43] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Chun-Xia Zhao
    Min Guo
    Jie Mao
    Yun-Tao Li
    Yuan-Peng Wu
    Hua Guo
    Dong Xiang
    Hui Li
    Chinese Journal of Polymer Science, 2023, 41 : 334 - 344
  • [44] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Zhao, Chun-Xia
    Guo, Min
    Mao, Jie
    Li, Yun-Tao
    Wu, Yuan-Peng
    Guo, Hua
    Xiang, Dong
    Li, Hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (03) : 334 - 344
  • [45] Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion
    Wang, Yimeng
    Huang, Furong
    Chen, Xibang
    Wang, Xiao-Wei
    Zhang, Wen-Bin
    Peng, Jing
    Li, Jiuqiang
    Zhai, Maolin
    CHEMISTRY OF MATERIALS, 2018, 30 (13) : 4289 - 4297
  • [46] 3D printing of self-healing and degradable conductive ionoelastomers for customized flexible sensors
    Luo, Xin
    Wu, Han
    Wang, Chengyun
    Jin, Qingxin
    Luo, Chunyi
    Ma, Guangmeng
    Guo, Wang
    Long, Yu
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [47] Highly Flexible, Self-Bonding, Self-Healing, and Conductive Soft Pressure Sensors Based on Dicarboxylic Cellulose Nanofiber Hydrogels
    Abouzeid, Ragab
    Shayan, Mohammad
    Wu, Tongyao
    Gwon, Jaegyoung
    Karki, Timo A.
    Wu, Qinglin
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (09) : 7009 - 7021
  • [48] Self-Healing Ionogels Based on Ternary Polymer With Tunable Adhesion and Stretchability for Strain Sensing Applications
    Hao, Senyuan
    Ma, Qizhi
    Cao, Menghui
    Jia, Yunchao
    Li, Yilong
    JOURNAL OF POLYMER SCIENCE, 2025, 63 (07) : 1536 - 1545
  • [49] Electrically conductive self-healing polymer composite coatings
    Bailey, Brennan M.
    Leterrier, Yves
    Garcia, S. J.
    van der Zwaag, S.
    Michaud, Veronique
    PROGRESS IN ORGANIC COATINGS, 2015, 85 : 189 - 198
  • [50] Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability
    Zhao, Lingling
    Li, Xin
    Li, Yan
    Wang, Xuemiao
    Yang, Wu
    Ren, Jie
    BIOMACROMOLECULES, 2021, 22 (03) : 1273 - 1281