A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors

被引:79
作者
Nie, Zhen [1 ]
Peng, Kelin [1 ,2 ]
Lin, Lizhi [1 ]
Yang, Jueying [1 ]
Cheng, Zhekun [1 ]
Gan, Qiang [1 ]
Chen, Yu [1 ,2 ]
Feng, Changgen [1 ,2 ]
机构
[1] Beijing Inst Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
关键词
Agar; Borate bond; MXene; Conductive hydrogel; Flexible sensor; STRAIN SENSORS; TOUGH; PRESSURE;
D O I
10.1016/j.cej.2022.139843
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conductive hydrogels (CHs) have drawn wide attention from the field of flexible sensor for their similarities to tissues, excellent flexibility and good electrical conductivity. However, most of the reported hydrogel-based flexible sensors display the disadvantages of poor tensile strength, low sensitivity and insufficient stability, and most of them are prepared with non-degradable synthetic polymers, which have greatly limited their application. To solve these problems, in this work, we have constructed an agar-based dynamic double cross -linked CH by the dynamic crosslinking between agar and borax via borate bonds and the hydrogen bonds be-tween agar chains. The CH exhibits excellent electrical conductivities, tensile properties and self-healing abilities. A novel two-dimensional material, MXene nanosheet, was introduced to further improve the mechanical prop-erties and ionic conductivity of the CH with its high ionic conductivity and ability to form hydrogen bonds with agar. The obtained Agar/Borax/MXene CH displays the excellent strength and elongation of 129 kPa and 105.1 % and the satisfying ionic conductivity of 8.14 x 10-2 S/cm. The flexible sensor assembled with Agar/Borax hydrogel with 0.15 wt% MXene exhibits a wide strain detection range from 0 to 100 %, high sensitivity (GF approximate to 1.520) and good stability. Our work has provided a novel strategy for the construction of green flexible sensors with good mechanical properties and high sensitivity.
引用
收藏
页数:13
相关论文
共 42 条
  • [41] Highly Strong, Stretchable, and Conductive Reduced Graphene Oxide Composite Hydrogel-Based Sensors for Motoring Strain and Pressure
    Zhao, Rui
    Xu, Xinyue
    Hu, Liang
    [J]. ACS APPLIED POLYMER MATERIALS, 2021, 3 (10): : 5155 - 5161
  • [42] Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor
    Zheng, Haiyan
    Lin, Nan
    He, Yanyi
    Zuo, Baoqi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 40013 - 40031