Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?

被引:27
作者
Lyu, Peijie [1 ,2 ]
Liu, Nana [1 ]
Harrawood, Brian [3 ]
Solomon, Justin [3 ]
Wang, Huixia [1 ]
Chen, Yan [1 ]
Rigiroli, Francesca [4 ]
Ding, Yuqin [2 ,5 ]
Schwartz, Fides Regina [2 ]
Jiang, Hanyu [2 ,6 ]
Lowry, Carolyn [7 ]
Wang, Luotong [8 ]
Samei, Ehsan [3 ]
Gao, Jianbo [1 ]
Marin, Daniele [2 ]
机构
[1] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, 1 East Jianshe Rd, Zhengzhou 450052, Henan, Peoples R China
[2] Duke Univ, Dept Radiol, Med Ctr, 2301 Erwin Rd,Box 3808, Durham, NC 27710 USA
[3] Duke Univ, Dept Radiol, Carl E Ravin Adv Imaging Labs, Med Ctr, 2424 Erwin Rd,Suite 302, Durham, NC 27705 USA
[4] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Radiol, 1 Deaconess Rd,330 Brookline Ave, Boston, MA 02215 USA
[5] Fudan Univ, Zhongshan Hosp, Dept Radiol, 180 Fenglin Rd, Shanghai 20032, Peoples R China
[6] Sichuan Univ, Dept Radiol, West China Hosp, 37 Guoxue Alley, Chengdu 610041, Sichuan, Peoples R China
[7] Duke Univ Hlth Syst, Clin Imaging Phys Grp, 2424 Erwin Rd,Ste 302, Durham, NC 27705 USA
[8] CT Imaging Res Ctr, GE Healthcare China, 1 Tongji South Rd, Beijing 100176, Peoples R China
关键词
Multidetector computed tomography; Phantoms; Imaging; Image processing; Computer-assisted; Deep learning; Liver neoplasms; FILTERED BACK-PROJECTION; ITERATIVE RECONSTRUCTION; ABDOMINAL CT; IMAGE-RECONSTRUCTION; CONTRAST; REDUCTION; DETECTABILITY; PERFORMANCE; RESOLUTION; ALGORITHM;
D O I
10.1007/s00330-022-09206-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To compare the image quality and hepatic metastasis detection of low-dose deep learning image reconstruction (DLIR) with full-dose filtered back projection (FBP)/iterative reconstruction (IR). Methods A contrast-detail phantom consisting of low-contrast objects was scanned at five CT dose index levels (10, 6, 3, 2, and 1 mGy). A total of 154 participants with 305 hepatic lesions who underwent abdominal CT were enrolled in a prospective non-inferiority trial with a three-arm design based on phantom results. Data sets with full dosage (13.6 mGy) and low dosages (9.5, 6.8, or 4.1 mGy) were acquired from two consecutive portal venous acquisitions, respectively. All images were reconstructed with FBP (reference), IR (control), and DLIR (test). Eleven readers evaluated phantom data sets for object detectability using a two-alternative forced-choice approach. Non-inferiority analyses were performed to interpret the differences in image quality and metastasis detection of low-dose DLIR relative to full-dose FBP/IR. Results The phantom experiment showed the dose reduction potential from DLIR was up to 57% based on the reference FBP dose index. Radiation decreases of 30% and 50% resulted in non-inferior image quality and hepatic metastasis detection with DLIR compared to full-dose FBP/IR. Radiation reduction of 70% by DLIR performed inferiorly in detecting small metastases (< 1 cm) compared to full-dose FBP (difference: -0.112; 95% confidence interval [CI]: -0.178 to 0.047) and full-dose IR (difference: -0.123; 95% CI: -0.182 to 0.053) (p < 0.001). Conclusion DLIR enables a 50% dose reduction for detecting low-contrast hepatic metastases while maintaining comparable image quality to full-dose FBP and IR.
引用
收藏
页码:1629 / 1640
页数:12
相关论文
共 29 条
[1]   Dual-Source Single-Energy Multidetector CT Used to Obtain Multiple Radiation Exposure Levels within the Same Patient: Phantom Development and Clinical Validation [J].
Bellini, Davide ;
Ramirez-Giraldo, Juan Carlos ;
Bibbey, Alex ;
Solomon, Justin ;
Hurwitz, Lynne M. ;
Farjat, Alfredo ;
Mileto, Achille ;
Samei, Ehsan ;
Marin, Daniele .
RADIOLOGY, 2017, 283 (02) :526-537
[2]  
Boone J., 2011, SIZE SPECIFIC DOSE E, DOI [10.37206/143, DOI 10.37206/143]
[3]   Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment [J].
Bornet, Pierre-Antoine ;
Villani, Nicolas ;
Gillet, Romain ;
Germain, Edouard ;
Lombard, Charles ;
Blum, Alain ;
Teixeira, Pedro Augusto Gondim .
EUROPEAN RADIOLOGY, 2022, 32 (05) :3161-3172
[4]   Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods [J].
Chen, Baiyu ;
Christianson, Olav ;
Wilson, Joshua M. ;
Samei, Ehsan .
MEDICAL PHYSICS, 2014, 41 (07)
[5]   Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study [J].
Choi, Hyunsu ;
Chang, Won ;
Kim, Jong Hyo ;
Ahn, Chulkyun ;
Lee, Heejin ;
Kim, Hae Young ;
Cho, Jungheum ;
Lee, Yoon Jin ;
Kim, Young Hoon .
EUROPEAN RADIOLOGY, 2022, 32 (02) :1247-1255
[6]   Observer Performance with Varying Radiation Dose and Reconstruction Methods for Detection of Hepatic Metastases [J].
Fletcher, Joel G. ;
Fidler, Jeff L. ;
Venkatesh, Sudhakar K. ;
Hough, David M. ;
Takahashi, Naoki ;
Yu, Lifeng ;
Johnson, Matthew ;
Leng, Shuai ;
Holmes, David R., III ;
Carter, Rickey ;
McCollough, Cynthia H. .
RADIOLOGY, 2018, 289 (02) :455-464
[7]   Estimwtion of Observer Performance for Reduced Radiation Dose Lavels in CT: Eliminating Reduced Dose Levels That Are Too Low Is the First Step [J].
Fletcher, Joel G. ;
Yu, Lifeng ;
Fidler, Jeff L. ;
Levin, David L. ;
DeLone, David R. ;
Hough, David M. ;
Takahashi, Naoki ;
Venkatesh, Sudhakar K. ;
Sykes, Anne-Marie G. ;
White, Darin ;
Lindell, Rebecca M. ;
Kotsenas, Amy L. ;
Campeau, Norbert G. ;
Lehman, Vance T. ;
Bartley, Adam C. ;
Leng, Shuai ;
Holmes, David R., III ;
Toledano, Alicia Y. ;
Carter, Rickey E. ;
McCollough, Cynthia H. .
ACADEMIC RADIOLOGY, 2017, 24 (07) :876-890
[8]   State of the Art: Iterative CT Reconstruction Techniques [J].
Geyer, Lucas L. ;
Schoepf, U. Joseph ;
Meinel, Felix G. ;
Nance, John W., Jr. ;
Bastarrika, Gorka ;
Leipsic, Jonathon A. ;
Paul, Narinder S. ;
Rengo, Marco ;
Laghi, Andrea ;
De Cecco, Carlo N. .
RADIOLOGY, 2015, 276 (02) :338-356
[9]   Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study [J].
Greffier, Joel ;
Hamard, Aymeric ;
Pereira, Fabricio ;
Barrau, Corinne ;
Pasquier, Hugo ;
Beregi, Jean Paul ;
Frandon, Julien .
EUROPEAN RADIOLOGY, 2020, 30 (07) :3951-3959
[10]  
Hsieh J., 2019, White Paper (JB68676XX)