Silver Thin-Film Electrodes Grown by Low-Temperature Plasma-Enhanced Spatial Atomic Layer Deposition at Atmospheric Pressure

被引:10
|
作者
Hasselmann, Tim [1 ,2 ]
Misimi, Bujamin [1 ,2 ]
Boysen, Nils [3 ]
Zanders, David [3 ]
Wree, Jan-Lucas [3 ]
Rogalla, Detlef [4 ]
Haeger, Tobias [1 ,2 ]
Zimmermann, Florian [1 ,2 ]
Brinkmann, Kai Oliver [1 ,2 ]
Schaedler, Sebastian [5 ]
Theirich, Detlef [1 ,2 ]
Heiderhoff, Ralf [1 ,2 ]
Devi, Anjana [3 ]
Riedl, Thomas [1 ,2 ]
机构
[1] Univ Wuppertal, Inst Elect Devices, D-42119 Wuppertal, Germany
[2] Univ Wuppertal, Wuppertal Ctr Smart Mat & Syst, D-42119 Wuppertal, Germany
[3] Ruhr Univ Bochum, Inorgan Mat Chem, D-44801 Bochum, Germany
[4] Ruhr Univ Bochum, RUBION, D-44801 Bochum, Germany
[5] Carl Zeiss Microscopy GmbH, D-73447 Oberkochen, Germany
关键词
atmospheric pressure; atomic layer deposition; electrodes; organic solar cells; plasma enhanced ALD; silver; spatial ALD; ENERGY; NANOSTRUCTURES; PLATFORM;
D O I
10.1002/admt.202200796
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unique properties of atomic layer deposition (ALD) are mainly exploited for metal oxides, while the growth of metals, such as silver, is still in its infancy. Low growth temperatures and high growth rates are essential to achieve conductive (i.e. percolated) films. Here, a study based on the authors' recently introduced N-heterocyclic carbene-based Ag amide precursor [(NHC)Ag(hmds)] (1,3-di-tert-butyl-imidazolin-2-ylidene silver(I) 1,1,1-trimethyl-N-(trimethylsilyl) silanaminide) using plasma-enhanced spatial ALD at atmospheric pressure and at deposition temperatures as low as 60 degrees C, is provided. The favorable reactivity and high volatility of the [(NHC)Ag(hmds)] precursor affords high growth rates up to 3.4 x 10(14) Ag atoms cm(-2) per cycle, which are approximate to 2.5 times higher than that found with the established triethylphosphine(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) silver(I) [Ag(fod)(PEt3)] precursor. Consequently, highly conductive Ag films with resistivities as low as 2.7 mu omega cm are achieved at a deposition temperature of 100 degrees C with a percolation threshold of approximate to 2.6 x 10(17) Ag atoms cm(-2), which is more than 1.6 times lower compared to [Ag(fod)(PEt3)]. As a concept study, conductive Ag layers are used as bottom electrodes in organic solar cells, that achieve the same performance as those based on Ag electrodes resulting from a high vacuum process.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The dependence of aluminum nitride thin-film microstructure on the number of low-temperature plasma-enhanced atomic layer deposition process cycles
    Ambartsumov, M. G.
    Tarala, V. A.
    Krandievsky, S. O.
    Kravtsov, A. A.
    Sautiev, A. B.
    Mitrofanenko, L. M.
    SURFACE & COATINGS TECHNOLOGY, 2019, 378
  • [2] An N-Heterocyclic Carbene Based Silver Precursor for Plasma-Enhanced Spatial Atomic Layer Deposition of Silver Thin Films at Atmospheric Pressure
    Boysen, Nils
    Hasselmann, Tim
    Karle, Sarah
    Rogalla, Detlef
    Theirich, Detlef
    Winter, Manuela
    Riedl, Thomas
    Devi, Anjana
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (49) : 16224 - 16227
  • [3] Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films
    Potts, S. E.
    Keuning, W.
    Langereis, E.
    Dingemans, G.
    van de Sanden, M. C. M.
    Kessels, W. M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : P66 - P74
  • [4] Plasma-enhanced atomic layer deposition of indium-free ZnSnOx thin films for thin-film transistors
    Ryu, Seung Ho
    Hwang, Inhong
    Jeon, Dahui
    Lee, Sung Kwang
    Chung, Taek-Mo
    Han, Jeong Hwan
    Chae, Sieun
    Baek, In-Hwan
    Kim, Seong Keun
    APPLIED SURFACE SCIENCE, 2025, 680
  • [5] Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics
    Riha, Shannon C.
    Koegel, Alexandra A.
    Emery, Jonathan D.
    Pellin, Michael J.
    Martinson, Alex B. F.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4667 - 4673
  • [6] Dielectric barrier layers by low-temperature plasma-enhanced atomic layer deposition of silicon dioxide
    Barako, Michael T.
    English, Timothy S.
    Roy-Panzer, Shilpi
    Kenny, Thomas W.
    Goodson, Kenneth E.
    THIN SOLID FILMS, 2018, 649 : 24 - 29
  • [7] Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition
    Ozgit, Cagla
    Donmez, Inci
    Alevli, Mustafa
    Biyikli, Necmi
    THIN SOLID FILMS, 2012, 520 (07) : 2750 - 2755
  • [8] Ru thin film grown on TaN by plasma enhanced atomic layer deposition
    Xie, Qi
    Jiang, Yu-Long
    Musschoot, Jan
    Deduytsche, Davy
    Detavernier, Christophe
    Van Meirhaeghe, Roland L.
    Van den Berghe, Sven
    Ru, Guo-Ping
    Li, Bing-Zong
    Qu, Xin-Ping
    THIN SOLID FILMS, 2009, 517 (16) : 4689 - 4693
  • [9] Low-Temperature Self-Limiting Growth of III-Nitride Thin Films by Plasma-Enhanced Atomic Layer Deposition
    Biyikli, Necmi
    Ozgit, Cagle
    Donmez, Inci
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (10) : 1008 - 1014
  • [10] Spatial Atmospheric Atomic Layer Deposition of InxGayZnzO for Thin Film Transistors
    Illiberi, A.
    Cobb, B.
    Sharma, A.
    Grehl, T.
    Brongersma, H.
    Roozeboom, F.
    Gelinck, G.
    Poodt, P.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (06) : 3671 - 3675