Exercise training promotes growth through hypertrophy and enhances capillarization and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)

被引:8
|
作者
Zhao, Liulan [1 ]
Xu, Lai [1 ]
Yang, Yi [1 ]
He, Qishuang [1 ]
Liu, Qiao [1 ]
Luo, Jie [1 ]
Luo, Wei [1 ]
Zhang, Xin [1 ]
Yan, Taiming [1 ]
Yang, Song [1 ]
机构
[1] Sichuan Agr Univ, Coll Anim Sci & Technol, Chengdu 611130, Sichuan, Peoples R China
关键词
Micropterus salmoides; Muscle fiber structure; GH/IGF growth axis; Angiogenesis; Antioxidant ability; SKELETAL-MUSCLE; FISH MUSCLE; TUMOR ANGIOGENESIS; MODERATE EXERCISE; SWIMMING EXERCISE; GENE-EXPRESSION; FLESH QUALITY; TELEOST FISH; PERFORMANCE; STRESS;
D O I
10.1016/j.aquaculture.2022.738850
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Exercise training can improve the growth performance, immunocompetence, and stress resistance of fish, even altering their physiological parameters and gene expression. Largemouth bass (Micropterus salmoides) that originally lived in rivers and lakes are now often raised in ponds without flowing water, leading to a lack of exercise. This study examined the effects of exercise training on largemouth bass (with initial body length 10.68 +/- 0.32 cm) growth performance by analyzing white muscle microanatomy and angiogenesis and by measuring antioxidant capacity in muscle and liver. Three water velocities were employed to assess the effects for 60 days: V0 (0 cm/s, control), V1 (13.4 +/- 0.4 cm/s), and V2 (26.5 +/- 0.9 cm/s). The results showed that: (1) both exercise groups had higher feeding rates, and group V1 exercised fish showed significant increases in weight gain, specific growth rate, and final body length. (2) Exercise training promoted muscle hypertrophy by increasing fiber cross-sectional area in the group V1. The expression levels of growth-related genes such as insulin-like growth factor-1 (IGF-1), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta 1 (S6K1 beta) were upregulated, accompanied by inhibition of growth in the group V2 via upregulation of the expression of muscle ring protein 1 (MuRF1) and atrogin-1. (3) Exercise training significantly promoted angiogenesis processes, and the expression of angiogenesis-related genes such as vascular endothelial growth factor A (VEGF-A) and its receptor VEGFR2 was upregulated in liver and muscle. (4) Exercise training reduced the risk of oxidative stress in liver and muscle by increasing antioxidant enzyme activity in the group V1; however, fish in the group V2 had decreased antioxidant enzyme activity and increased malondialdehyde (MDA) and reactive oxygen species (ROS) contents in muscle and thus may have been at risk of oxidative stress. In conclusion, exercise training with an appropriate water flow velocity can stimulate the growth potential of largemouth bass through muscle hypertrophy and enhance capillarization and antioxidant capacity.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)
  • [2] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [3] Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass, Micropterus salmoides
    Song, Ming-Qi
    Shi, Chao-Ming
    Lin, Shi-Mei
    Chen, Yong-Jun
    Shen, Huang-Mian
    Luo, Li
    AQUACULTURE, 2018, 490 : 355 - 361
  • [4] Dietary threonine influences antioxidant capacity and immune status in juvenile largemouth bass ( Micropterus salmoides) )
    Yu, Heng
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Chen, Xiaoru
    Wang, Yongli
    Liang, Hualiang
    AQUACULTURE REPORTS, 2024, 37
  • [5] Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
    Huang, Dongyu
    Jahazi, Joshua Daniel
    Ren, Mingchun
    Zhang, Lu
    Liang, Hualiang
    VETERINARY SCIENCES, 2024, 11 (11)
  • [6] A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides)
    Qin, Junjie
    Mi, Haifeng
    Ren, Mingchun
    Huang, Dongyu
    Liang, Hualiang
    Zhang, Lu
    Teng, Tao
    Yin, Heng
    FISHES, 2025, 10 (01)
  • [7] Inactivated lactobacillus plantarum promoted growth performance, intestine health and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides
    Liu, Wenkai
    Zhang, Jianmin
    Liu, Jingjing
    Wang, Xuan
    Dong, Lixue
    Gao, Xin
    Wen, Hua
    Jiang, Ming
    Meng, Xiaolin
    Tian, Juan
    AQUACULTURE REPORTS, 2024, 36
  • [8] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [9] An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass (Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota
    Wu, Youjun
    Cheng, Yan
    Qian, Shichao
    Zhang, Wei
    Huang, Mengmeng
    Yang, Shun
    Fei, Hui
    ANIMALS, 2023, 13 (03):
  • [10] Dietary vitamin C requirement and its effects on tissue antioxidant capacity of juvenile largemouth bass, Micropterus salmoides
    Chen, Yong-Jun
    Yuan, Rui-Min
    Liu, Yong-Jian
    Yang, Hui-Jun
    Liang, Gui-Ying
    Tian, Li-Xia
    AQUACULTURE, 2015, 435 : 431 - 436