Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift

被引:44
|
作者
Feng, Yong [1 ]
Chen, Jinglong [1 ]
He, Shuilong [2 ]
Pan, Tongyang [1 ]
Zhou, Zitong [3 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China
[3] ShaanXi Fast Gear Co Ltd, Xian 710119, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Training; Task analysis; Generators; Convolutional neural networks; Generative adversarial networks; Category shift; classifier discrepancy; cross-domain fault diagnosis; moment matching; multisource domain adaptation (MDA); CONVOLUTIONAL NEURAL-NETWORK; DISCREPANCY; MACHINES;
D O I
10.1109/TNNLS.2021.3111732
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has demonstrated splendid performance in mechanical fault diagnosis on condition that source and target data are identically distributed. In engineering practice, however, the domain shift between source and target domains significantly limits the further application of intelligent algorithms. Despite various transfer techniques proposed, either they focus on single-source domain adaptation (SDA) or they utilize multisource domain globally or locally, which both cannot address the cross-domain diagnosis effectively, especially with category shift. To this end, we propose globally localized multisource DA for cross-domain fault diagnosis with category shift. Specifically, we construct a GlocalNet to fuse multisource information comprehensively, which consists of a feature generator and three classifiers. By optimizing the Wasserstein discrepancy of classifiers locally and accumulative higher order multisource moment globally, multisource DA is achieved from domain and class levels thus to reduce the shift on domain and category. To refine the classifier at sample level, a distilling strategy is presented. Finally, an adaptive weighting policy is employed for reliable result. To evaluate the effectiveness, the proposed method is compared with multiple methods on four bearing vibration datasets. Experimental results indicate the superiority and practicability of the proposed method for cross-domain fault diagnosis.
引用
收藏
页码:3082 / 3096
页数:15
相关论文
共 50 条
  • [1] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [2] Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift
    Wang, Yu
    Gao, Jie
    Wang, Wei
    Yang, Xu
    Du, Jinsong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212
  • [3] Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network
    Wang, Zhichao
    Huang, Wentao
    Chen, Yi
    Jiang, Yunchuan
    Peng, Gaoliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [4] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [5] Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis
    Sun, Kai
    Xu, Xinghan
    Lu, Nannan
    Xia, Huijuan
    Han, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Discriminative manifold domain adaptation for cross-domain fault diagnosis of rotating machineries
    Qin, Yi
    Wang, Zhengyi
    Qian, Quan
    Wang, Yi
    Luo, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [8] Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
    Chao, Ko-Chieh
    Chou, Chuan-Bi
    Lee, Ching-Hung
    SENSORS, 2022, 22 (12)
  • [9] Double-level discriminative domain adaptation network for cross-domain fault diagnosis
    Li, Yufeng
    Xu, Xinghan
    Hu, Lei
    Sun, Kai
    Han, Min
    APPLIED INTELLIGENCE, 2025, 55 (05)
  • [10] Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy
    Zhang Y.-C.
    Li Q.
    Ren Z.-H.
    Zhou S.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (03): : 367 - 372