Finding Regions of Counterfactual Explanations via Robust Optimization

被引:1
作者
Maragno, Donato [1 ]
Kurtz, Jannis [1 ]
Rober, Tabea E. [1 ]
Goedhart, Rob [1 ]
Birbil, S. Ilker [1 ]
den Hertog, Dick [1 ]
机构
[1] Univ Amsterdam, Amsterdam Business Sch, NL-1018 TV Amsterdam, Netherlands
关键词
counterfactual explanation; explainable AI; machine learning; robust optimization;
D O I
10.1287/ijoc.2023.0153
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Counterfactual explanations (CEs) play an important role in detecting bias and improving the explainability of data -driven classification models. A CE is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this work, we derive an iterative method to calculate robust CEs (i.e., CEs that remain valid even after the features are slightly perturbed). To this end, our method provides a whole region of CEs, allowing the user to choose a suitable recourse to obtain a desired outcome. We use algorithmic ideas from robust optimization and prove convergence results for the most common machine learning methods, including decision trees, tree ensembles, and neural networks. Our experiments show that our method can efficiently generate globally optimal robust CEs for a variety of common data sets and classification models.
引用
收藏
页码:1316 / 1334
页数:19
相关论文
共 34 条
  • [11] Dominguez-Olmedo R, 2022, PR MACH LEARN RES
  • [12] Dua D., 2017, UCI machine learning repository
  • [13] Dutta S, 2022, PR MACH LEARN RES
  • [14] The Robustness of Counterfactual Explanations Over Time
    Ferrario, Andrea
    Loi, Michele
    [J]. IEEE ACCESS, 2022, 10 : 82736 - 82750
  • [15] Deep neural networks and mixed integer linear optimization
    Fischetti, Matteo
    Jo, Jason
    [J]. CONSTRAINTS, 2018, 23 (03) : 296 - 309
  • [16] Forel A, 2022, PREPRINT
  • [17] ReLU networks as surrogate models in mixed-integer linear programs
    Grimstad, Bjarne
    Andersson, Henrik
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2019, 131
  • [18] Gurobi Optim. Beaverton OR USA, 2023, Gurobi Optimizer Reference Manual
  • [19] Kanamori K, 2021, AAAI CONF ARTIF INTE, V35, P11564
  • [20] Karimi AH, 2020, PR MACH LEARN RES, V108, P895