Finding Regions of Counterfactual Explanations via Robust Optimization

被引:1
作者
Maragno, Donato [1 ]
Kurtz, Jannis [1 ]
Rober, Tabea E. [1 ]
Goedhart, Rob [1 ]
Birbil, S. Ilker [1 ]
den Hertog, Dick [1 ]
机构
[1] Univ Amsterdam, Amsterdam Business Sch, NL-1018 TV Amsterdam, Netherlands
关键词
counterfactual explanation; explainable AI; machine learning; robust optimization;
D O I
10.1287/ijoc.2023.0153
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Counterfactual explanations (CEs) play an important role in detecting bias and improving the explainability of data -driven classification models. A CE is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this work, we derive an iterative method to calculate robust CEs (i.e., CEs that remain valid even after the features are slightly perturbed). To this end, our method provides a whole region of CEs, allowing the user to choose a suitable recourse to obtain a desired outcome. We use algorithmic ideas from robust optimization and prove convergence results for the most common machine learning methods, including decision trees, tree ensembles, and neural networks. Our experiments show that our method can efficiently generate globally optimal robust CEs for a variety of common data sets and classification models.
引用
收藏
页码:1316 / 1334
页数:19
相关论文
共 34 条
  • [1] Strong mixed-integer programming formulations for trained neural networks
    Anderson, Ross
    Huchette, Joey
    Ma, Will
    Tjandraatmadja, Christian
    Vielma, Juan Pablo
    [J]. MATHEMATICAL PROGRAMMING, 2020, 183 (1-2) : 3 - 39
  • [2] Evaluating Robustness of Counterfactual Explanations
    Artelt, Andre
    Vaquet, Valerie
    Velioglu, Riza
    Hinder, Fabian
    Brinkrolf, Johannes
    Schilling, Malte
    Hammer, Barbara
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [4] Reformulation versus cutting-planes for robust optimization: A computational study
    Bertsimas D.
    Dunning I.
    Lubin M.
    [J]. Computational Management Science, 2016, 13 (2) : 195 - 217
  • [5] Computing robust basestock levels
    Bienstock, Daniel
    Ozbay, Nuri
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (02) : 389 - 414
  • [6] Black E, 2021, PREPRINT
  • [7] Bui N, 2022, PREPRINT
  • [8] Carrizosa E, 2021, EXPERT SYSTEMS APPL, V238
  • [9] Cplex I. I., 2009, Int. Bus. Mach. Corp, V46, P157
  • [10] Multi-Objective Counterfactual Explanations
    Dandl, Susanne
    Molnar, Christoph
    Binder, Martin
    Bischl, Bernd
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I, 2020, 12269 : 448 - 469