ON WAVELET TYPE GENERALIZED BEZIER OPERATORS

被引:3
作者
Karsli, Harun [1 ]
机构
[1] Bolu Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14030 Golkoy Bolu, Turkiye
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2023年 / 6卷 / 03期
关键词
Bezier basis; wavelets; compactly supported Daubechies wavelets; bounded variation; Chanturiya's modulus of variation; approximation; POINTWISE CONVERGENCE;
D O I
10.3934/mfc.2022057
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with construction and studying wavelet type generalized Bezier operators by using the compactly supported Daubechies wavelets of the given function f. The basis used in this construction are the wavelet expansion of the function f instead of its rational sampling values f (k/n). By using the Chanturiya modulus of variation we estimate the rate of pointwise convergence of (WBn,alpha f) (x) at those x > 0 at which the one-sided limits f(x+), f(x-) exist. Clearly our wavelet type operators contain at least classical version, Durrmeyer and the Kantorovich form of the generalized Bezier operators and hence our results extend some of the previous results on generalized Bezier operators, such as [1], [11] and [12].
引用
收藏
页码:439 / 452
页数:14
相关论文
共 24 条
[1]  
Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
[2]  
Acu A. M., 2022, Math. Found. Comput., V4, P1
[3]  
Agratini O., 1997, Revue d'analyse numerique et de theorie de l'approximation, P3
[4]  
Agratini O., 2001, Math. Notes (Miskolc), V2, P3
[5]  
Bezier P., 1972, NUMERICAL CONTROL MA
[6]  
CHANTURIYA ZA, 1974, DOKL AKAD NAUK SSSR+, V214, P63
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]  
Daubechies I., 1992, CBMS-NSF Regional Conference Series in Applied Mathematics, Vvol 61
[9]   CNN MODELS FOR READABILITY OF CHINESE TEXTS [J].
Feng, Han ;
Hou, Sizai ;
Wei, Le-Yin ;
Zhou, Ding-Xuan .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (04) :351-362
[10]  
Gonska H. H., 1995, Revue d'analyse numerique et de theorie de l'approximation, P131