Energy-Limited Joint Source-Channel Coding of Gaussian Sources over Gaussian Channels with Unknown Noise Level

被引:1
作者
Lev, Omri [1 ]
Khina, Anatoly [2 ]
机构
[1] MIT, Signals Informat & Algorithms Lab, Cambridge, MA 02139 USA
[2] Tel Aviv Univ, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
joint source-channel coding; Gaussian channel; infinite bandwidth; energy constraint; RATE-DISTORTION FUNCTION; SIDE INFORMATION; TRANSMISSION; COMPRESSION;
D O I
10.3390/e25111522
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of transmitting a Gaussian source with minimum mean square error distortion over an infinite-bandwidth additive white Gaussian noise channel with an unknown noise level and under an input energy constraint. We construct a universal joint source-channel coding scheme with respect to the noise level, that uses modulo-lattice modulation with multiple layers. For each layer, we employ either analog linear modulation or analog pulse-position modulation (PPM). We show that the designed scheme with linear layers requires less energy compared to existing solutions to achieve the same quadratically increasing distortion profile with the noise level; replacing the linear layers with PPM layers offers an additional improvement.
引用
收藏
页数:33
相关论文
共 37 条
[1]  
[Anonymous], 1979, Principles of Digital Communication and Coding
[2]  
Asnani H, 2015, IEEE T INFORM THEORY, V61, P3980, DOI [10.1109/TIT.2015.2434829, 10.1109/tit.2015.2434829]
[3]   Minimum Energy Analysis for Robust Gaussian Joint Source-Channel Coding With a Distortion-Noise Profile [J].
Baniasadi, Mohammadamin ;
Koken, Erman ;
Tuncel, Ertem .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (12) :7702-7713
[4]  
Baniasadi M, 2020, Arxiv, DOI arXiv:2001.09370
[5]  
Baniasadi M, 2020, INT SYM INF THEOR AP, P51
[6]   Robust Gaussian JS']JSCC Under the Near-Infinity Bandwidth Regime with Side Information at the Receiver [J].
Baniasadi, Mohammadamin ;
Tuncel, Ertem .
2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, :2423-2428
[7]  
Baniasadi M, 2020, IEEE INT SYMP INFO, P2474, DOI [10.1109/ISIT44484.2020.9174128, 10.1109/isit44484.2020.9174128]
[8]   A Note on the Rate of Decay of Mean-Squared Error With SNR for the AWGN Channel [J].
Bhattad, Kapil ;
Narayanan, Krishna R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) :332-335
[9]  
Cover T. A., 2006, Elements of information theory, V2nd
[10]  
El Gamal A, 2011, NETWORK INFORMATION THEORY, P1