On Periodic Solutions for Some Nonlinear Fractional Pantograph Problems with ?-Hilfer Derivative

被引:0
作者
Benzenati, Djilali [1 ,2 ]
Bouriah, Soufyane [2 ,3 ]
Salim, Abdelkrim [1 ,4 ]
Benchohra, Mouffak [1 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, Bel Abbes 22000, Algeria
[2] Hassiba Benbouali Univ Chlef, Lab Math & Applicat, Hay Salem, Chlef, Algeria
[3] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Dept Math, Chlef, Algeria
[4] Hassiba Benbouali Univ Chlef, Fac Technol, Chlef 02000, Algeria
关键词
and phrases; coincidence degree theory; existence; uniqueness; -Hilfer fractional derivative; systems; EQUATIONS;
D O I
10.1134/S1995080223040054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to study the existence and uniqueness of periodic solutions for some class of nonlinear fractional pantograph systems with ?-Hilfer derivative. The proofs are based upon the coincidence degree theory of Mawhin. To show the efficiency of the stated result, an illustrative example will be demonstrated.
引用
收藏
页码:1264 / 1279
页数:16
相关论文
共 32 条
  • [1] Abbas S., 2012, DEV MATH, DOI [10.1007/978-1-4614-4036-9, DOI 10.1007/978-1-4614-4036-9]
  • [2] Abbas S., 2014, ADV FRACTIONAL DIFFE
  • [3] On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Kucche, Kishor D.
    Alqudah, Manar A.
    Ali, Saeed M.
    Jeelani, Mdi Begum
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] Some generalized fractional calculus operators and their applications in integral equations
    Agrawal, Om P.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 700 - 711
  • [5] Almeida R. K. S., 2019, MICROPOR MESOPOR MAT, P1
  • [6] Functional Differential Equations Involving theψ-Caputo Fractional Derivative
    Almeida, Ricardo
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (02) : 1 - 8
  • [7] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [8] EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 712 - 720
  • [9] Benchohra M., 2015, MOROCCAN J PURE APPL, V1, P22, DOI [DOI 10.7603/s40956-015-0002-9, DOI 10.7603/S40956-015-0002-9]
  • [10] Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) : 25 - 35