The Yamabe Problem for Distributional Curvature

被引:1
作者
Zhang, Huaiyu [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
关键词
Distributional scalar curvature; Yamabe problem; Yamabe equation; POSITIVE MASS THEOREM; METRIC-MEASURE-SPACES; RICCI CURVATURE; SCALAR CURVATURE; CONFORMAL DEFORMATION; GENERALIZED-FUNCTIONS; ELLIPTIC-EQUATIONS; MANIFOLDS; GEOMETRY; EXISTENCE;
D O I
10.1007/s12220-023-01366-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider Yamabe problem for a smooth manifold with a W-1,W-p metric. The curvature is considered as a distribution since our metric is not twice differentiable. We prove that for any metric g which is W-1,W-p on M such that the Yamabe constant of (M, g) is less than that of the standard sphere, there exists a W-1,W-p metric on M which is conformal to g and has constant distributional scalar curvature.
引用
收藏
页数:33
相关论文
共 69 条
[1]   Yamabe metrics on cylindrical manifolds [J].
Akutagawa, K ;
Botvinnik, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :259-333
[2]  
Akutagawa K., 2018, TSINGHUA LECT MATH A, V45, P101
[3]   The Yamabe problem on stratified spaces [J].
Akutagawa, Kazuo ;
Carron, Gilles ;
Mazzeo, Rafe .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (04) :1039-1079
[4]   GENERALIZED RIEMANNIAN SPACES [J].
ALEKSANDROV, AD ;
BERESTOVSKII, VN ;
NIKOLAEV, IG .
RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (03) :1-54
[5]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[6]  
Aubin Th., 1976, J. Differential Geom, V11, P573, DOI DOI 10.4310/JDG/1214433725
[7]  
Aubin Thierry, 1998, SOME NONLINEAR PROBL, DOI [10.1007/978-3-662-13006-3, DOI 10.1007/978-3-662-13006-3]
[8]  
Bamler RH, 2016, MATH RES LETT, V23, P325, DOI 10.4310/MRL.2016.v23.n2.a2
[9]   THIN SHELLS IN GENERAL-RELATIVITY AND COSMOLOGY - THE LIGHTLIKE LIMIT [J].
BARRABES, C ;
ISRAEL, W .
PHYSICAL REVIEW D, 1991, 43 (04) :1129-1142
[10]  
Burago Dmitri., 2001, A course in metric geometry, V33