Relation of xylitol formation and lignocellulose degradation in yeast

被引:12
作者
Bianchini, Italo de Andrade [1 ]
Jofre, Fanny Machado [1 ]
Queiroz, Sarah de Souza [1 ]
Lacerda, Talita Martins [1 ]
Felipe, Maria das Gracas de Almeida [1 ]
机构
[1] Univ Sao Paulo, Engn Sch Lorena, Dept Biotechnol, Estr Municipal Campinho 100, BR-12602810 Lorena, SP, Brazil
关键词
Lignocellulosic biomass; Hemicellulosic hydrolysate; Lignocellulosic inhibitors; Toxicity; Cell adaptation; SACCHAROMYCES-CEREVISIAE; HEMICELLULOSIC HYDROLYSATE; CANDIDA-GUILLIERMONDII; METABOLIC-RESPONSES; XYLOSE REDUCTASE; TOXIC COMPOUNDS; INHIBITORS; ADAPTATION; MECHANISMS; CONVERSION;
D O I
10.1007/s00253-023-12495-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity.
引用
收藏
页码:3143 / 3151
页数:9
相关论文
共 50 条
[1]   Metabolic effects of furaldehydes and impacts on biotechnological processes [J].
Almeida, Joao R. M. ;
Bertilsson, Magnus ;
Gorwa-Grauslund, Marie F. ;
Gorsich, Steven ;
Liden, Gunnar .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (04) :625-638
[2]   Xylitol: A review on the progress and challenges of its production by chemical route [J].
Arcano, Yaime Delgado ;
Valmana Garcia, Oscar Daniel ;
Mandelli, Dalmo ;
Carvalho, Wagner Alves ;
Magalhaes Pontes, Luiz Antonio .
CATALYSIS TODAY, 2020, 344 :2-14
[3]   The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae [J].
Ask, Magnus ;
Bettiga, Maurizio ;
Mapelli, Valeria ;
Olsson, Lisbeth .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[4]   Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation [J].
Aulitto, Martina ;
Fusco, Salvatore ;
Nickel, David Benjamin ;
Bartolucci, Simonetta ;
Contursi, Patrizia ;
Franzen, Carl Johan .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
[5]   Short-term Adaptation Strategy Improved Xylitol Production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate [J].
Bianchini, Italo de Andrade ;
Sene, Luciane ;
da Cunha, Mario Antonio Alves ;
Felipe, Maria das Gracas de Almeida .
BIOENERGY RESEARCH, 2022, 15 (02) :1182-1194
[6]   Xylitol-Sweetener Production from Barley Straw: Optimization of Acid Hydrolysis Condition with the Energy Consumption Simulation [J].
Candido Moraes, Elisangela de Jesus ;
Virginio Silva, Debora Danielle ;
Dussan, Kelly Johana ;
Tesche, Luana Zanchetta ;
de Almeida Silva, Joao Batista ;
Rai, Mahendra ;
de Almeida Felipe, Maria das Gracas .
WASTE AND BIOMASS VALORIZATION, 2020, 11 (05) :1837-1849
[7]   Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate [J].
Carlos Lopez-Linares, Juan ;
Romero, Inmaculada ;
Cara, Cristobal ;
Castro, Eulogio ;
Mussatto, Solange I. .
BIORESOURCE TECHNOLOGY, 2018, 247 :736-743
[8]   Challenges and prospects of xylitol production with whole cell bio-catalysis: A review [J].
Dasgupta, Diptarka ;
Bandhu, Sheetal ;
Adhikari, Dilip K. ;
Ghosh, Debashish .
MICROBIOLOGICAL RESEARCH, 2017, 197 :9-21
[9]   Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037 [J].
de Arrud, Priscila Vaz ;
dos Santos, Julio Cesar ;
Lacerda Brambilla Rodrigues, Rita de Cassia ;
Virginio da Silva, Debora Danielle ;
Yamakawa, Celina Kiyomi ;
de Moraes Rocha, George Jackson ;
Nolasco Junior, Jonas ;
da Cruz Pradella, Jose Geraldo ;
Vaz Rossell, Carlos Eduardo ;
Felipe, Maria das Gracas de Almeida .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 47 :297-302
[10]   Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A011, Candida oregonensis B021 and Schizoblastosporion starkeyi-henricii L012, isolated from Rucianka peatland [J].
Filipowicz, Natalia ;
Momotko, Malwina ;
Boczkaj, Grzegorz ;
Cieslinski, Hubert .
ENZYME AND MICROBIAL TECHNOLOGY, 2020, 141 (141)