Uncertain DEA-Malmquist productivity index model and its application

被引:4
作者
Wu, Jiali [1 ]
Sheng, Yuhong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty theory; uncertain DEA model; malmquist productivity index; decision making unit; EFFICIENCY;
D O I
10.3233/JIFS-222109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uncertain data envelopment analysis (DEA) model make an estimate of the efficiency of decision making unit (DMU) under data uncertainty. The current research on uncertain DEA model is only based on sectional data to calculate DMU's static efficiency for theDMU's set in the same period. From this article, we attempt to combine Malmquist productivity index and uncertain DEA model (the uncertain DEA-Malmquist productivity index model) to calculate the dynamic change of DMU's efficiency over time. Additionally, the impact of technical factors and scale factors on DMU's efficiency can be further explored and the Malmquist productivity index will be decomposed into pure technical efficiency change, scale efficiency change and technical change. Finally, the article uses the model to analyze the provincial environmental efficiency from 2014 to 2016 in China.
引用
收藏
页码:5295 / 5308
页数:14
相关论文
共 29 条
[11]   Multi-criteria decision analysis of China's energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index [J].
Huang, Beijia ;
Zhang, Long ;
Ma, Linmao ;
Bai, Wuliyasu ;
Ren, Jingzheng .
ENERGY, 2021, 228
[12]   New patterns in China's regional green development: An interval Malmquist-Luenberger productivity analysis [J].
Huang, Hongyun ;
Mo, Renbian ;
Chen, Xingquan .
STRUCTURAL CHANGE AND ECONOMIC DYNAMICS, 2021, 58 :161-173
[13]   An Uncertain DEA Model for Scale Efficiency Evaluation [J].
Jiang, Bao ;
Lio, Waichon ;
Li, Xiang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (08) :1616-1624
[14]  
Kordrostami S, 2017, FUZZY INF ENG, V9, P281, DOI 10.1016/j.fiae.2017.09.003
[15]   Uncertain data envelopment analysis with imprecisely observed inputs and outputs [J].
Lio, Waichon ;
Liu, Baoding .
FUZZY OPTIMIZATION AND DECISION MAKING, 2018, 17 (03) :357-373
[16]  
Liu B., 2009, J UNCERTAIN SYSTEM, V3, P3, DOI DOI 10.HTTP://WWW.W0RLDACADEMICUNI0N.C0M/J0URNAL/JUS/JUSV0L03N01PAPER01.PDF
[17]  
Liu B., 2007, Uncertainty Theory, DOI [10.1007/978-3-540-73165-85, DOI 10.1007/978-3-540-73165-85]
[18]  
Liu B., 2010, SPRING, V85
[19]  
Liu Y.H., 2010, J UNCERTAIN SYSTEMS, V4, P181
[20]  
Malmquist S., 1953, TRABAJOS ESTADISTICA, V4, P209, DOI [10.1007/BF03006863, DOI 10.1007/BF03006863]