Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice

被引:46
作者
Radha, Beena [1 ]
Sunitha, Nagenahalli Chandrappa [2 ]
Sah, Rameswar P. [3 ]
Azharudheen, Md T. P. [3 ]
Krishna, G. K. [4 ]
Umesh, Deepika Kumar [5 ]
Thomas, Sini [6 ]
Anilkumar, Chandrappa [3 ]
Upadhyay, Sameer [3 ]
Kumar, Awadhesh [3 ]
Manikanta, Ch L. N. [7 ]
Behera, S. [3 ]
Marndi, Bishnu Charan [3 ]
Siddique, Kadambot H. M. [8 ]
机构
[1] Kerala Agr Univ, Coll Agr, Dept Plant Physiol, Thiruvananthapuram, Kerala, India
[2] Univ Agr Sci, Dept Genet & Plant Breeding, Bangalore, Karnataka, India
[3] Indian Council Agr Res, Natl Rice Res Inst, Div Crop Prod, Cuttack, Orissa, India
[4] Kerala Agr Univ, Coll Agr, Dept Plant Physiol, Trichur, Kerala, India
[5] Cent Sericultural Res & Training Inst Berhampore, Mulberry Breeding & Genet Sect, Cent Silk Board, Murshidabad, West Bengal, India
[6] Kerala Agr Univ, Dept Plant Physiol, Reg Agr Res Stn, Kumarakom, Kerala, India
[7] Indira Gandhi Krishi Vishwavidyalaya, Dept Plant Physiol, Raipur, India
[8] Univ Western Australia, Inst Agr, Perth, WA, Australia
关键词
multiple abiotic stresses; physiology; high temperature; salinity; drought; eCO2; sensitivity; tolerance; ORYZA-SATIVA L; QUANTITATIVE TRAIT LOCI; HIGH NIGHT TEMPERATURE; ELEVATED CO2; SALT TOLERANCE; GRAIN QUALITY; SALINITY TOLERANCE; DROUGHT TOLERANCE; HEAT TOLERANCE; CARBON-DIOXIDE;
D O I
10.3389/fpls.2022.996514
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
引用
收藏
页数:19
相关论文
共 191 条
[51]   Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought [J].
Ghimire, Krishna Hari ;
Quiatchon, Lenie A. ;
Vikram, Prashant ;
Swamy, B. P. Mallikarjuna ;
Dixit, Shalabh ;
Ahmed, Helaluddin ;
Hernandez, Jose E. ;
Borromeo, Teresita H. ;
Kumar, Arvind .
FIELD CROPS RESEARCH, 2012, 131 :88-96
[52]   Mapping QTLs for Traits Related to Salinity Tolerance at Seedling Stage of Rice (Oryza sativa L.): An Agrigenomics Study of an Iranian Rice Population [J].
Ghomi, Khadijeh ;
Rabiei, Babak ;
Sabouri, Hossein ;
Sabouri, Atefeh .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2013, 17 (05) :242-251
[53]   SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa) [J].
Gimhani, D. R. ;
Gregorio, Glenn B. ;
Kottearachchi, N. S. ;
Samarasinghe, W. L. G. .
MOLECULAR GENETICS AND GENOMICS, 2016, 291 (06) :2081-2099
[54]   Mapping QTLs for submergence tolerance in rice using a population fixed for SUB1A tolerant allele [J].
Gonzaga, Zennia Jean C. ;
Carandang, Jerome ;
Singh, Anshuman ;
Collard, Bertrand C. Y. ;
Thomson, Michael J. ;
Septiningsih, Endang M. .
MOLECULAR BREEDING, 2017, 37 (04)
[55]   Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1 [J].
Gonzaga, Zennia Jean C. ;
Carandang, Jerome ;
Sanchez, Darlene L. ;
Mackill, David J. ;
Septiningsih, Endang M. .
EUPHYTICA, 2016, 209 (03) :627-636
[56]   Candidate Genes and Pathways in Rice Co-Responding to Drought and Salt Identified by gcHap Network [J].
Hao, Zhiqi ;
Ma, Sai ;
Liang, Lunping ;
Feng, Ting ;
Xiong, Mengyuan ;
Lian, Shangshu ;
Zhu, Jingyan ;
Chen, Yanjun ;
Meng, Lijun ;
Li, Min .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
[57]   Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan [J].
Hasegawa, Toshihiro ;
Sakai, Hidemitsu ;
Tokida, Takeshi ;
Nakamura, Hirofumi ;
Zhu, Chunwu ;
Usui, Yasuhiro ;
Yoshimoto, Mayumi ;
Fukuoka, Minehiko ;
Wakatsuki, Hitomi ;
Katayanagi, Nobuko ;
Matsunami, Toshinori ;
Kaneta, Yoshihiro ;
Sato, Takashi ;
Takakai, Fumiaki ;
Sameshima, Ryoji ;
Okada, Masumi ;
Mae, Tadahiko ;
Makino, Amane .
FUNCTIONAL PLANT BIOLOGY, 2013, 40 (02) :148-159
[58]   Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance [J].
He, Mei ;
He, Cheng-Qiang ;
Ding, Nai-Zheng .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[59]   qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O-sativa [J].
Hirabayashi, Hideyuki ;
Sasaki, Kazuhiro ;
Kambe, Takashi ;
Gannaban, Ritchel B. ;
Miras, Monaliza A. ;
Mendioro, Merlyn S. ;
Simon, Eliza V. ;
Lumanglas, Patrick D. ;
Fujita, Daisuke ;
Takemoto-Kuno, Yoko ;
Takeuchi, Yoshinobu ;
Kaji, Ryota ;
Kondo, Motohiko ;
Kobayashi, Nobuya ;
Ogawa, Tsugufumi ;
Ando, Ikuo ;
Jagadish, Krishna S. V. ;
Ishimaru, Tsutomu .
JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (05) :1227-1236
[60]   Genetic Mapping of Anaerobic Germination-Associated QTLs Controlling Coleoptile Elongation in Rice [J].
Hsu, Sheng-Kai ;
Tung, Chih-Wei .
RICE, 2015, 8 :1-12