Infrared and visible image fusion in a rolling guided filtering framework based on deep feature extraction

被引:1
|
作者
Cheng, Wei [1 ,2 ]
Lin, Bing [2 ]
Cheng, Liming [2 ]
Cui, Yong [1 ]
机构
[1] Tsinghua Univ, Beijing 100084, Peoples R China
[2] Unicom Guangdong Ind Internet Co Ltd, Guangzhou 510000, Peoples R China
关键词
Infrared and visible image; Rolling guided filtering; PCANet; Weight map; Feature extraction; TRANSFORM;
D O I
10.1007/s11276-024-03716-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To preserve rich detail information and high contrast, a novel image fusion algorithm is proposed based on rolling-guided filtering combined with deep feature extraction. Firstly, input images are filtered to acquire various scales decomposed images using rolling guided filtering. Subsequently, PCANet is introduced to extract weight maps to guide base layer fusion. For the others layer, saliency maps of input images are extracted by a saliency measure. Then, the saliency maps are optimized by guided filtering to guide the detail layer fusion. Finally, the final fusion result are reconstructed by all fusion layers. The experimental fusion results demonstrate that fusion algorithm in this study obtains following advantages of rich detail information, high contrast, and complete edge information preservation in the subjective evaluation and better results in the objective evaluation index. In particular, the proposed method is 16.9% ahead of the best comparison result in the SD objective evaluation index.
引用
收藏
页码:7561 / 7568
页数:8
相关论文
共 50 条
  • [31] IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy
    Bai, Yang
    Gao, Meijing
    Li, Shiyu
    Wang, Ping
    Guan, Ning
    Yin, Haozheng
    Yan, Yonghao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10610 - 10622
  • [32] Semantic Guided Infrared and Visible Image Fusion
    Wu, Wei
    Zhang, Dazhi
    Hou, Jilei
    Wang, Yu
    Lu, Tao
    Zhou, Huabing
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (12) : 1733 - 1738
  • [33] Infrared and Visible Image Fusion Based on Contrast and Structure Extraction
    Song, Jiawen
    Zhu, Daming
    Fu, Zhitao
    Chen, Sijing
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [34] GeFuNet: A knowledge-guided deep network for the infrared and visible image fusion
    Su, Weijian
    Huang, Yongdong
    Li, Qiufu
    Zuo, Fengyuan
    INFRARED PHYSICS & TECHNOLOGY, 2022, 127
  • [35] Infrared and Visible Image Fusion Based on NSCT and Deep Learning
    Feng, Xin
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (06): : 1405 - 1419
  • [36] Infrared and visible image fusion based on deep Boltzmann model
    Feng Xin
    Li Chuan
    Hu Kai-Qun
    ACTA PHYSICA SINICA, 2014, 63 (18)
  • [37] Infrared and visible image fusion and detection based on interactive training strategy and feature filter extraction module
    Chen, Bingxin
    Luo, Shaojuan
    Wu, Heng
    Chen, Meiyun
    He, Chunhua
    OPTICS AND LASER TECHNOLOGY, 2024, 179
  • [38] Region parallel fusion algorithm based on infrared and visible image feature
    Tong Wu-qin
    Yang Hua
    Huang Chao-chao
    Jin Wei
    Yang Li
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2007: IMAGE PROCESSING, 2008, 6623
  • [39] Infrared and Visible Image Fusion Algorithm Based on Feature Optimization and GAN
    Hao Shuai
    Li Jiahao
    Ma Xu
    He Tian
    Sun Siyan
    Li Tong
    ACTA PHOTONICA SINICA, 2023, 52 (12)
  • [40] Infrared and Visible Image Fusion Based on Innovation Feature Simultaneous Decomposition
    He, Guiqing
    Dong, Dandan
    Xing, Siyuan
    Zhao, Ximei
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1174 - 1177