The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index

被引:0
作者
He, Shengjie [1 ]
Geng, Qiaozhi [1 ]
Hao, Rong-Xia [2 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 11期
关键词
unicyclic graph; diameter; edge revised Szeged index; edge Szeged index; WIENER INDEX;
D O I
10.3934/math.20231342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a connected graph. The edge revised Szeged index of H is defined as Sz(e)*P (H) = Sigma(e=uvEH) (m(u)(e|H) + m(0)(e|H)/2)(m(v)(e|H) + m(0)(e|H)/2), where m(u)(e| H) (resp., m(v)(e|H)) is the number of edges whose distance to vertex u (resp., v) is smaller than to vertex v (resp., u), and m0(e|H) is the number of edges equidistant from u and v. In this paper, the extremal unicyclic graphs with given diameter and minimum edge revised Szeged index are characterized.
引用
收藏
页码:26301 / 26327
页数:27
相关论文
共 22 条
[1]  
Bondy J.A., 2008, Graph Theory, DOI DOI 10.1007/978-1-84628-970-5
[2]  
Cai XC, 2010, MATCH-COMMUN MATH CO, V63, P133
[3]   The edge-Wiener index of a graph [J].
Dankelmann, P. ;
Gutman, I. ;
Mukwembi, S. ;
Swart, H. C. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3452-3457
[4]   A Novel Version of the Edge-Szeged Index [J].
Dong, Hui ;
Zhou, Bo ;
Trinajstic, Nenad .
CROATICA CHEMICA ACTA, 2011, 84 (04) :543-545
[5]  
Gutman I, 2008, CROAT CHEM ACTA, V81, P263
[6]   On the edge-Szeged index of unicyclic graphs with perfect matchings [J].
He, Shengjie ;
Hao, Rong-Xia ;
Feng, Yan-Quan .
DISCRETE APPLIED MATHEMATICS, 2020, 284 (284) :207-223
[7]   On Extremal Cacti with Respect to the Edge Szeged Index and Edge-vertex Szeged Index [J].
He, Shengjie ;
Hao, Rong-Xia ;
Yu, Aimei .
FILOMAT, 2018, 32 (11) :4069-4078
[8]  
Khadikar P, 2001, MATCH-COMMUN MATH CO, P7
[9]  
Li J., 2012, Graphene, V1, P1, DOI [DOI 10.4236/GRAPHENE.2012.11001, 10.1007/978-1-4614-4220-2]
[10]  
Li JP, 2013, MATCH-COMMUN MATH CO, V70, P621