SRL-assisted AFM: Generating planar unstructured quadrilateral meshes with supervised and reinforcement learning-assisted advancing front method

被引:6
作者
Tong, Hua [1 ]
Qian, Kuanren [1 ]
Halilaj, Eni [1 ,2 ,3 ]
Zhang, Yongjie Jessica [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Robot Inst, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Quadrilateral mesh generation; Complex geometry; Advancing front method; Supervised learning; Reinforcement learning; ROBUST;
D O I
10.1016/j.jocs.2023.102109
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-quality mesh generation is the foundation of accurate finite element analysis. Due to the vast interior vertices search space and complex initial boundaries, mesh generation for complicated domains requires substantial manual processing and has long been considered the most challenging and time-consuming bottleneck of the entire modeling and analysis process. In this paper, we present a novel computational framework named "SRL-assisted AFM"for meshing planar geometries by combining the advancing front method with neural networks that select reference vertices and update the front boundary using "policy networks". These deep neural networks are trained using a unique pipeline that combines supervised learning with reinforcement learning to iteratively improve mesh quality. First, we generate different initial boundaries by randomly sampling points in a square domain and connecting them sequentially. These boundaries are used for obtaining input meshes and extracting training datasets in the supervised learning module. We then iteratively improve the reinforcement learning model performance with reward functions designed for special requirements, such as improving the mesh quality and controlling the number and distribution of extraordinary points. Our proposed supervised learning neural networks achieve an accuracy higher than 98% on predicting commercial software. The final reinforcement learning neural networks automatically generate high-quality quadrilateral meshes for complex planar domains with sharp features and boundary layers.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative [J].
Ambellan, Felix ;
Tack, Alexander ;
Ehlke, Moritz ;
Zachow, Stefan .
MEDICAL IMAGE ANALYSIS, 2019, 52 :109-118
[2]   ROBUST, GEOMETRICALLY BASED, AUTOMATIC TWO-DIMENSIONAL MESH GENERATION [J].
BAEHMANN, PL ;
WITTCHEN, SL ;
SHEPHARD, MS ;
GRICE, KR ;
YERRY, MA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (06) :1043-1078
[3]   PAVING - A NEW APPROACH TO AUTOMATED QUADRILATERAL MESH GENERATION [J].
BLACKER, TD ;
STEPHENSON, MB .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (04) :811-847
[4]   Integer-Grid Maps for Reliable Quad Meshing [J].
Bommes, David ;
Campen, Marcel ;
Ebke, Hans-Christian ;
Alliez, Pierre ;
Kobbelt, Leif .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04)
[5]   Mixed-Integer Quadrangulation [J].
Bommes, David ;
Zimmer, Henrik ;
Kobbelt, Leif .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[6]  
Bottou Leon, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P421, DOI 10.1007/978-3-642-35289-8_25
[7]  
Cassandra Anthony R., 1998, PROC WORK NOTES AAAI, V1724
[8]  
DocampoSanchez J., 2019, AIAA SCIT 2019 FOR, P1988, DOI DOI 10.2514/6.2019-1988
[9]   Harmonic functions for quadrilateral remeshing of arbitrary manifolds [J].
Dong, S ;
Kircher, S ;
Garland, M .
COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (05) :392-423
[10]   An Improved Advancing-front-Delaunay Method for Triangular Mesh Generation [J].
Guo, Yufei ;
Huang, Xuhui ;
Ma, Zhe ;
Hai, Yongqing ;
Zhao, Rongli ;
Sun, Kewu .
ADVANCES IN COMPUTER GRAPHICS, CGI 2021, 2021, 13002 :477-487