Robust Mutual Synchronization in Long Spin Hall Nano-oscillator Chains

被引:21
作者
Kumar, Akash [1 ,2 ,3 ]
Fulara, Himanshu [4 ]
Khymyn, Roman [1 ]
Litvinenko, Artem [1 ]
Zahedinejad, Mohammad [5 ]
Rajabali, Mona [5 ]
Zhao, Xiaotian [1 ]
Behera, Nilamani [1 ]
Houshang, Afshin [1 ]
Awad, Ahmad A. [1 ,2 ,3 ]
akerman, Johan [1 ,2 ,3 ]
机构
[1] Univ Gothenburg, Phys Dept, S-41296 Gothenburg, Sweden
[2] Tohoku Univ, Ctr Sci & Innovat Spintron, Aoba Ku, Sendai 9808577, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Aoba Ku, Sendai 9808577, Japan
[4] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, India
[5] NanOsc AB, S-16440 Kista, Sweden
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
Mutual synchronization; Spin Hall effect; SpinHall nano-oscillators; Spintronic oscillators; DRIVEN; GENERATION;
D O I
10.1021/acs.nanolett.3c02036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mutual synchronizationof N serially connectedspintronic nano-oscillators boosts their coherence by N and peak power by N (2). Increasing thenumber of synchronized nano-oscillators in chains holds significancefor improved signal quality and emerging applications such as oscillatorbased unconventional computing. We successfully fabricate spin Hallnano-oscillator chains with up to 50 serially connected nanoconstrictionsusing W/NiFe, W/CoFeB/MgO, and NiFe/Pt stacks. Our experiments demonstraterobust and complete mutual synchronization of 21 nanoconstrictionsat an operating frequency of 10 GHz, achieving line widths 79,000. As the number of mutually synchronizedoscillators increases, we observe a quadratic increase in peak power,resulting in 400-fold higher peak power in long chains compared toindividual nanoconstrictions. While chains longer than 21 nanoconstrictionsalso achieve complete mutual synchronization, it is less robust, andtheir signal quality does not improve significantly, as they tendto break into partially synchronized states.
引用
收藏
页码:6720 / 6726
页数:7
相关论文
共 50 条
[21]   Elongated skyrmion as spin torque nano-oscillator and magnonic waveguide [J].
Liang, Xue ;
Shen, Laichuan ;
Xing, Xiangjun ;
Zhou, Yan .
COMMUNICATIONS PHYSICS, 2022, 5 (01)
[22]   A skyrmion-based spin-torque nano-oscillator [J].
Garcia-Sanchez, F. ;
Sampaio, J. ;
Reyren, N. ;
Cros, V. ;
Kim, J-V .
NEW JOURNAL OF PHYSICS, 2016, 18
[23]   Response to noise of a vortex based spin transfer nano-oscillator [J].
Grimaldi, Eva ;
Dussaux, Antoine ;
Bortolotti, Paolo ;
Grollier, Julie ;
Pillet, Gregoire ;
Fukushima, Akio ;
Kubota, Hitoshi ;
Yakushiji, Kay ;
Yuasa, Shinji ;
Cros, Vincent .
PHYSICAL REVIEW B, 2014, 89 (10)
[24]   Controllable excitation of multiple spin wave bullet modes in a spin Hall nano-oscillator based on [Ni/Co]/Pt multilayers [J].
Chen, Lina ;
Chen, Yang ;
Zhou, Kaiyuan ;
Li, Haotian ;
Pu, Yong ;
Xu, Yongbing ;
Du, Youwei ;
Liu, Ronghua .
NANOSCALE, 2021, 13 (16) :7838-7843
[25]   Weighted spin torque nano-oscillator system for neuromorphic computing [J].
Bohnert, T. ;
Rezaeiyan, Y. ;
Claro, M. S. ;
Benetti, L. ;
Jenkins, A. S. ;
Farkhani, H. ;
Moradi, F. ;
Ferreira, R. .
COMMUNICATIONS ENGINEERING, 2023, 2 (01)
[26]   Perfect and robust phase-locking of a spin transfer vortex nano-oscillator to an external microwave source [J].
Hamadeh, A. ;
Locatelli, N. ;
Naletov, V. V. ;
Lebrun, R. ;
de Loubens, G. ;
Grollier, J. ;
Klein, O. ;
Cros, V. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[27]   Spatial coexistence of multiple modes in a nanogap spin Hall nano-oscillator with extended Pt/Ni/Fe trilayers [J].
Chen, Lina ;
Wang, Wenqiang ;
Zhan, Xiang ;
Zhou, Kaiyuan ;
Gao, Zhenyu ;
Liang, Like ;
Zhou, Tiejun ;
Du, Youwei ;
Liu, Ronghua .
PHYSICAL REVIEW B, 2022, 105 (10)
[28]   Amplitude-phase coupling in a spin-torque nano-oscillator [J].
Kudo, Kiwamu ;
Nagasawa, Tazumi ;
Sato, Rie ;
Mizushima, Koichi .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[29]   Current-dependent linewidth of a spin-transfer nano-oscillator [J].
Sato, R. ;
Saito, Y. ;
Mizushima, K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (08) :990-995
[30]   Spin-orbit torque nano-oscillator with giant magnetoresistance readout [J].
Chen, Jen-Ru ;
Smith, Andrew ;
Montoya, Eric A. ;
Lu, Jia G. ;
Krivorotov, Ilya N. .
COMMUNICATIONS PHYSICS, 2020, 3 (01)