Robust Mutual Synchronization in Long Spin Hall Nano-oscillator Chains

被引:18
作者
Kumar, Akash [1 ,2 ,3 ]
Fulara, Himanshu [4 ]
Khymyn, Roman [1 ]
Litvinenko, Artem [1 ]
Zahedinejad, Mohammad [5 ]
Rajabali, Mona [5 ]
Zhao, Xiaotian [1 ]
Behera, Nilamani [1 ]
Houshang, Afshin [1 ]
Awad, Ahmad A. [1 ,2 ,3 ]
akerman, Johan [1 ,2 ,3 ]
机构
[1] Univ Gothenburg, Phys Dept, S-41296 Gothenburg, Sweden
[2] Tohoku Univ, Ctr Sci & Innovat Spintron, Aoba Ku, Sendai 9808577, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Aoba Ku, Sendai 9808577, Japan
[4] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, India
[5] NanOsc AB, S-16440 Kista, Sweden
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
Mutual synchronization; Spin Hall effect; SpinHall nano-oscillators; Spintronic oscillators; DRIVEN; GENERATION;
D O I
10.1021/acs.nanolett.3c02036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mutual synchronizationof N serially connectedspintronic nano-oscillators boosts their coherence by N and peak power by N (2). Increasing thenumber of synchronized nano-oscillators in chains holds significancefor improved signal quality and emerging applications such as oscillatorbased unconventional computing. We successfully fabricate spin Hallnano-oscillator chains with up to 50 serially connected nanoconstrictionsusing W/NiFe, W/CoFeB/MgO, and NiFe/Pt stacks. Our experiments demonstraterobust and complete mutual synchronization of 21 nanoconstrictionsat an operating frequency of 10 GHz, achieving line widths 79,000. As the number of mutually synchronizedoscillators increases, we observe a quadratic increase in peak power,resulting in 400-fold higher peak power in long chains compared toindividual nanoconstrictions. While chains longer than 21 nanoconstrictionsalso achieve complete mutual synchronization, it is less robust, andtheir signal quality does not improve significantly, as they tendto break into partially synchronized states.
引用
收藏
页码:6720 / 6726
页数:7
相关论文
共 50 条
[1]   A 20 nm spin Hall nano-oscillator [J].
Durrenfeld, Philipp ;
Awad, Ahmad A. ;
Houshang, Afshin ;
Dumas, Randy K. ;
Akerman, Johan .
NANOSCALE, 2017, 9 (03) :1285-1291
[2]   Terahertz Antiferromagnetic Spin Hall Nano-Oscillator [J].
Cheng, Ran ;
Xiao, Di ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[3]   Spectral Characteristics of the Microwave Emission by the Spin Hall Nano-Oscillator [J].
Liu, R. H. ;
Lim, W. L. ;
Urazhdin, S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[4]   Spin-Hall nano-oscillator: A micromagnetic study [J].
Giordano, A. ;
Carpentieri, M. ;
Laudani, A. ;
Gubbiotti, G. ;
Azzerboni, B. ;
Finocchio, G. .
APPLIED PHYSICS LETTERS, 2014, 105 (04)
[5]   Spin caloritronic nano-oscillator [J].
Safranski, C. ;
Barsukov, I. ;
Lee, H. K. ;
Schneider, T. ;
Jara, A. A. ;
Smith, A. ;
Chang, H. ;
Lenz, K. ;
Lindner, J. ;
Tserkovnyak, Y. ;
Wu, M. ;
Krivorotov, I. N. .
NATURE COMMUNICATIONS, 2017, 8
[6]   Spatial mapping of torques within a spin Hall nano-oscillator [J].
Spicer, T. M. ;
Keatley, P. S. ;
Loughran, T. H. J. ;
Dvornik, M. ;
Awad, A. A. ;
Durrenfeld, P. ;
Houshang, A. ;
Ranjbar, M. ;
Akerman, J. ;
Kruglyak, V. V. ;
Hicken, R. J. .
PHYSICAL REVIEW B, 2018, 98 (21)
[7]   Towards terahertz spin Hall nano-oscillator with synthesized antiferromagnets [J].
Jiang, B. ;
Zhang, W. ;
Zhong, H. ;
Zhang, Y. ;
Yu, S. ;
Han, G. ;
Xiao, S. ;
Liu, G. ;
Yan, S. ;
Li, J. ;
Kang, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 490
[8]   Synchronization of Spin-Transfer Nano-Oscillator by an External Source [J].
Aleshin, K. N. ;
Matrosov, V. V. ;
Mishagin, K. G. .
TECHNICAL PHYSICS LETTERS, 2017, 43 (03) :281-284
[9]   Long-range mutual synchronization of spin Hall nano-oscillators [J].
Awad, A. A. ;
Durrenfeld, P. ;
Houshang, A. ;
Dvornik, M. ;
Iacocca, E. ;
Dumas, R. K. ;
Akerman, J. .
NATURE PHYSICS, 2017, 13 (03) :292-+
[10]   Dynamical mode coexistence and chaos in a nanogap spin Hall nano-oscillator [J].
Chen, Lina ;
Zhou, Kaiyuan ;
Urazhdin, S. ;
Jiang, Wencong ;
Du, Y. W. ;
Liu, R. H. .
PHYSICAL REVIEW B, 2019, 100 (10)